Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcriptome sequencing of two macaques, crab-eating macaque and Indian rhesus macaque


ABSTRACT: Deep sequencing of mRNA from two macaques, crab-eating macaque and Indian rhesus macaque Analysis of ploy(A)+ RNA of different specimens:brain,ileum,kidney,liver,testes and white adipose for crab-eating macaque while brain,heart,,kidney,liver,quadriceps and testes for Indian rhesus macaque

ORGANISM(S): Macaca mulatta

SUBMITTER: zhiyong huang 

PROVIDER: E-GEOD-29629 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques.

Yan Guangmei G   Zhang Guojie G   Fang Xiaodong X   Zhang Yanfeng Y   Li Cai C   Ling Fei F   Cooper David N DN   Li Qiye Q   Li Yan Y   van Gool Alain J AJ   Du Hongli H   Chen Jiesi J   Chen Ronghua R   Zhang Pei P   Huang Zhiyong Z   Thompson John R JR   Meng Yuhuan Y   Bai Yinqi Y   Wang Jufang J   Zhuo Min M   Wang Tao T   Huang Ying Y   Wei Liqiong L   Li Jianwen J   Wang Zhiwen Z   Hu Haofu H   Yang Pengcheng P   Le Liang L   Stenson Peter D PD   Li Bo B   Liu Xiaoming X   Ball Edward V EV   An Na N   Huang Quanfei Q   Zhang Yong Y   Fan Wei W   Zhang Xiuqing X   Li Yingrui Y   Wang Wen W   Katze Michael G MG   Su Bing B   Nielsen Rasmus R   Yang Huanming H   Wang Jun J   Wang Xiaoning X   Wang Jian J  

Nature biotechnology 20111016 11


The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many  ...[more]

Similar Datasets

2011-10-14 | GSE29629 | GEO
2020-09-15 | GSE154078 | GEO
| PRJNA141257 | ENA
2016-08-16 | E-GEOD-76788 | biostudies-arrayexpress
2016-08-20 | E-GEOD-85867 | biostudies-arrayexpress
2019-05-01 | GSE120935 | GEO
2011-05-11 | E-GEOD-19881 | biostudies-arrayexpress
2008-06-15 | E-GEOD-9531 | biostudies-arrayexpress
2016-08-20 | GSE85867 | GEO
| PRJNA1004471 | ENA