Expression analysis of protein production in the filamentous fungus Trichoderma reesei (Hypocrea jecorina)
Ontology highlight
ABSTRACT: Comparison of T. reesei grown on lactose fed chemostat cultivations in different growth rates and cell densities The analysis is further described in paper Correlation of gene expression and protein production rate - a system wide study. Mikko Arvas, Tiina Pakula, Bart Smit, Jari Rautio, Heini Koivistoinen, Paula Jouhten, Erno Lindfors, Marilyn Wiebe, Merja Penttilä and Markku Saloheimo, Submitted. Abstract: Background:Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results: We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions: Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR). A nine chip study using total RNA recovered from three separate cultures of T. reesei RutC-30 grown with growth rate 0.03, three separate cultures grown with growth rate 0.06 and three separate cultures grown with growth rate 0.03 in high cell density.
ORGANISM(S): Hypocrea jecorina
SUBMITTER: Mikko Arvas
PROVIDER: E-GEOD-30458 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA