Project description:Background & Aims: Cirrhosis and liver cancer are potential outcomes of advanced nonalcoholic fatty liver disease (NAFLD). It is not clear what factors determine whether patients will develop advanced or mild NAFLD, limiting non-invasive diagnosis and treatment before clinical sequelae emerge. We investigated whether DNA methylation profiles can distinguish patients with mild disease from those with advanced NAFLD, and how these patterns are functionally related to hepatic gene expression. Methods: We collected frozen liver biopsies and clinical data from patients with biopsy-proven NAFLD (56 in the discovery cohort and 34 in the replication cohort). Samples were divided into groups based on histologic severity of fibrosis: F0?1 (mild) and F3?4 (advanced). DNA methylation profiles were determined and coupled with gene expression data from the same biopsies; differential methylation was validated in subsets of the discovery and replication cohorts. We then analyzed interactions between the methylome and transcriptome. Results: Clinical features did not differ between patients known to have mild or advanced fibrosis based on biopsy analysis. There were 69,247 differentially methylated CpG sites (76% hypomethylated, 24% hypermethylated) in patients with advanced vs mild NAFLD (P<.05). Methylation at FGFR2, MAT1A, and CASP1 was validated by bisulfite pyrosequencing and the findings were reproduced in the replication cohort. Methylation correlated with gene transcript levels for 7% of differentially methylated CpG sites, indicating that differential methylation contributes to differences in expression. In samples with advanced NAFLD, many tissue repair genes were hypomethylated and overexpressed, whereas genes in certain metabolic pathways, including 1-carbon metabolism, were hypermethylated and under-expressed. Conclusions: Functionally relevant differences in methylation can distinguish patients with advanced vs mild NAFLD. Altered methylation of genes that regulate processes such as steatohepatitis, fibrosis, and carcinogenesis indicate the role of DNA methylation in progression of NAFLD. Three technical replicates were included for quality control along with 35 mild NAFLD (33 unique samples) and 24 advanced NAFLD (23 unique sample). One sample per technical duplication was randomly included for a total of 56 NAFLD samples used for study.
Project description:12 Holstein dairy heifers were limit-fed with high or low forage diets, and integrative hepatic metabolomics and proteomics were used to reveal insights into the mechanism of different feed efficiency behind that.
Project description:Nonalcoholic fatty liver disease represents a spectrum of pathology that ranges from benign steatosis to potentially-progressive steatohepatitis and affects more than 30% of US adults. Advanced NAFLD is associated with increased morbidity and mortality from cirrhosis, primary liver cancer, cardiovascular disease and extrahepatic cancers. Accurate identification of patients at risk for advanced NAFLD is challenging. The aims of this study were to define the liver gene expression patterns that distinguish mild from advanced NAFLD and to develop a gene expression profile associated with advanced NAFLD. We analyzed total RNA from 72 patients with NAFLD (40 with mild NAFLD, fibrosis stage 0-1 and 32 with advanced NAFLD, fibrosis stage 3-4) and developed a gene profile associated with advanced NAFLD. This dataset is part of the TransQST collection.
Project description:Elucidating the role of gut microbiota in physiological and pathological processes has recently emerged as a key research aim in life sciences. In this respect, metaproteomics (the study of the whole protein complement of a microbial community) can provide a unique contribution by revealing which functions are actually being expressed by specific microbial taxa. However, its wide application to gut microbiota research has been hindered by challenges in data analysis, especially related to the choice of the proper sequence databases for protein identification. Here we present a systematic investigation of variables concerning database construction and annotation, and evaluate their impact on human and mouse gut metaproteomic results. We found that both publicly available and experimental metagenomic databases lead to the identification of unique peptide assortments, suggesting parallel database searches as a mean to gain more complete information. Taxonomic and functional results were revealed to be strongly database-dependent, especially when dealing with mouse samples. As a striking example, in mouse the Firmicutes/Bacteroidetes ratio varied up to 10-fold depending on the database used. Finally, we provide recommendations regarding metagenomic sequence processing aimed at maximizing gut metaproteome characterization, and contribute to identify an optimized pipeline for metaproteomic data analysis.
Project description:This SuperSeries is composed of the following subset Series: GSE30447: Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (HepG2 data) GSE30450: Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (hepatocytes data) Refer to individual Series
Project description:Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity. Several models exist to study adipogenesis in vitro, of which the cell line 3T3-L1 is probably the most well known, albeit not the most physiologically appropriate. We used a microarray strategy to provide a global profile of miRNAs in brown and white primary murine adipocytes (prior to and following differentiation) and evaluated the similarity of the responses to non-primary cell models, through literature data-mining. We found 65 miRNAs regulated during in vitro adipogenesis in primary adipocytes. When we compared our primary adipocyte profiles with those of cell lines reported in the literature, we found a high degree of difference in adipogenesis-regulated miRNAs. We evaluated the expression of 10 of our adipogenesis-regulated miRNAs using real-time qPCR and then selected 5 miRNAs that showed robust expression levels and profiled these by qPCR in subcutaneous adipose tissue of 20 humans with a range of body mass indices (BMI, range=21-48). Of the miRNAs tested, mir-21 was both highly expressed in human adipose tissue and positively correlated with BMI (R2=0.49, p<0.001). In conclusion, we provide the preliminary analysis of miRNAs important for primary cell in vitro adipogenesis and find that the inflammation-associated miRNA, mir-21, is up-regulated in subcutaneous adipose tissue in human obesity. A global transcriptomic survey of subcutaneous adipose tissue from human subjects characterised as having normal glucose tolerance, glucose intolerance or frank type 2 diabetes.
Project description:Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2, however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing HMGCS2 and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolism pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance. To determine the global impact of Foxa1 on human liver gene transcription, microarray expression analyses were performed in human hepatocytes transfected with Ad-Foxa1 or Ad-Control. We used microarrays to detail the global programme of gene expression in human hepatocytes infected with Ad-Foxa1 or control adenovirus (insertless Ad-pACC).
Project description:The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secreted proteins, termed hepatokines. To identify hepatic secretory proteins involved in insulin resistance, we performed liver biopsies in humans with or without type 2 diabetes and conducted a comprehensive analysis of gene expression profiles. Samples for analysis were obtained from ten patients with type 2 diabetes and 7 subjects with normal glucose tolerance, who were admitted to Kanazawa University Hospital. Hepatic tissues were obtained with percutaneous needle liver biopsy, and immediately frozen in liquid nitrogen and stored at −80°C until use. This dataset is part of the TransQST collection.
Project description:Despite advances in antiviral therapy, molecular drivers of Hepatitis C Virus (HCV)-related liver disease remain poorly characterised. Chronic infection with HCV genotypes (1 and 3) differ in presentation of liver steatosis and virological response to therapies, both to interferon and direct acting antivirals. Using whole transcriptome microarrays, we analysed gene expression profiles of liver tissue obtained from individuals infected with either HCV G1 or G3 in progressive and advanced liver disease and identified key altered cellular pathways.