Expression data from hippocampus and cortex of 6- and 12-week curcumin-treated 15-month-old rats
Ontology highlight
ABSTRACT: Curcumin has been demonstrated to have many neuroprotective properties, including improvement of cognition in humans and neurogenesis in animals, yet the mechanism of such effects remains unclear. Here, we assessed behavioural performance and hippocampal cell proliferation in aged rats after 6- and 12-week curcumin-fortified diets. Curcumin enhanced non-spatial and spatial memory, as well as dentate gyrate cell proliferation as compared to control diet rats. We also investigated underlying mechanistic pathways that might link curcumin treatment to increased cognition and neurogenesis via microarray analysis of cortical and hippocampal mRNA transcription. We used microarrays to investigate the effects of short-term (6-week) and long-term (12-week) curcumin-supplemented diet on gene expression of hippocampus and cortex in aged rats. The hippocampus and cortex of every three rats from one group were pooled together, respectively and used for RNA extraction and hybridization on Affymetrix microarrays. To ensure the reliability of the data, we conducted hybridization experiments in duplicate microarrays from each RNA sample. The tissues examined by microarray are as follows: the hippocampus and cortex of 6-week curcumin-treated 15-month-old rats, the hippocampus and cortex of 6-week no curcumin-treated 15-month-old rats (control rats), the hippocampus and cortex of 12-week curcumin-treated 15-month-old rats, the hippocampus and cortex of 12-week no curcumin-treated 15-month-old rats (control rats).
ORGANISM(S): Rattus norvegicus
SUBMITTER: Chunxia Li
PROVIDER: E-GEOD-33137 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA