The response and recovery of Arabidopsis thaliana transcriptome to phosphate starvation [ATH1-121501]
Ontology highlight
ABSTRACT: Background: Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes the first genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation. Results: Genome-wide profiling revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified novel cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of primary versus redundant members of closely related gene families with respect to phosphate-starvation. Thus, among others, we show that PHO1 acts in shoot, whereas PHO1;H1 is likely the primary regulator in root. Conclusion: Our results uncover a much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the highest resolution of genome-wide data on plant nutrient stress to date. 6 Sample types, 3 replicates each
ORGANISM(S): Arabidopsis thaliana
SUBMITTER: Jun Liu
PROVIDER: E-GEOD-33790 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA