Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Uniform optimal framework for integrative next-gen sequence analysis


ABSTRACT: Here, we have collapsed multiple analysis problems into two coherent categories, signal detection and signal estimation and adapted linear-optimal solutions from signal processing theory. Our algorithms for detection (DFilter) and estimation (EFilter) extend naturally to integration of multiple datasets. In benchmarking tests, DFilter outperformed assay-specific algorithms at identifying promoters from histone ChIP-seq, binding sites from transcription factor (TF) ChIP-seq and open chromatin regions from DNase- and FAIRE-seq data. EFilter similarly outperformed an existing method for predicting mRNA levels from histone ChIP-seq data (Spearman correlation: 0.81 - 0.89). We performed H3K4me3 and H3K36me3 ChIP-seq on e11.5 mouse forebrain and used DFilter and EFilter to predict promoters and developmental gene expression, uncovering plausible gene targets for SNPs associated with neurodevelopmental disorders. Generated two histone modifiction ChiP-seq in developing embryo mouse forebrain and using them for making bioligical inferences

ORGANISM(S): Mus musculus

SUBMITTER: Vibhor Kumar 

PROVIDER: E-GEOD-34073 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2013-01-24 | E-GEOD-38165 | biostudies-arrayexpress
2013-01-25 | E-GEOD-38164 | biostudies-arrayexpress
2016-07-17 | E-GEOD-71128 | biostudies-arrayexpress
2015-03-01 | E-GEOD-58852 | biostudies-arrayexpress
2015-07-31 | E-GEOD-59176 | biostudies-arrayexpress
2012-12-20 | E-GEOD-34483 | biostudies-arrayexpress
2013-12-06 | E-GEOD-36292 | biostudies-arrayexpress
2013-03-31 | E-GEOD-39241 | biostudies-arrayexpress
2015-04-15 | E-GEOD-67881 | biostudies-arrayexpress
2016-02-25 | E-GEOD-72886 | biostudies-arrayexpress