Genetic variation in parthenogenetic collembolans is associated with differences in fitness and cadmium-induced transcriptome responses
Ontology highlight
ABSTRACT: Ecotoxicological tests may be biased by the use of laboratory strains that usually contain very limited genetic diversity. It is therefore essential to study how genetic variation influences stress tolerance relevant for toxicity outcomes. To that end we studied sensitivity to cadmium in two distinct genotypes of the parthogenetic soil ecotoxicological model organism Folsomia candida. Clonal lines of both genotypes (TO1 and TO2) showed divergent fitness responses to cadmium exposure; TO2 reproduction was 20% less affected by cadmium. Statistical analyses revealed significant differences between the cadmium-affected transcriptomes; i) the number of genes affected by cadmium in TO2 was only minor (~22%) compared to TO1; ii) 97 genes showed a genotype M-CM-^W cadmium interaction and their response to cadmium showed globally larger fold changes in TO1 when compared to TO2; iii) the interaction genes showed a concerted manner of expression in TO1 while a less coordinated pattern was observed in TO2. We conclude that (1) there is genetic variation in parthenogenetic populations of F. candida, and (2) this variation affects life-history and molecular endpoints relative to cadmium toxicity. This sheds new light on the sources of biological variability in test results, even when the test organisms are thought to be genetically homogeneous because of their parthenogenetic reproduction. Gene expression was measured in two different clones (TO1 and TO2) of the springtail Folsomia candida, after exposure of 2 days to soil containing cadmium (Cd+) and non-spiked (Cd-) soil. A 2 x 2 factorial analysis was performed, to examine the effect of clone (TO1, TO2), of treatment (Cd+, Cd-), and the clone x treatment interaction.
ORGANISM(S): Folsomia candida
SUBMITTER: Benjamin Nota
PROVIDER: E-GEOD-34167 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA