Brain expression data from adult mice prenatally exposed to ethanol
Ontology highlight
ABSTRACT: Moderate alcohol consumption during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse moder of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used two independent microarray experiments and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure via moderate maternal drinking. To generate samples, two independent groups of female C57BL/6J mice were given access to 10% ethanol in water or water only. Control females had access to water only. Females were mated and continued to drink from gestational day 0 to pup postnatal day 10. Whole brain RNA from adult (postnatal day 70) male ethanol-exposed offspring was extracted. For experiment 1, RNA samples from three mice were pooled to reduce litter effects and the pooled samples were hybridized on Affymetrix arrays (2 control and 2 ethanol chips, total n=12 mice). For experiment 2, RNA from two mice were pooled per chip and three arrays per treatment were used (3 control, 3 ethanol, total n=12 mice).
ORGANISM(S): Mus musculus
SUBMITTER: Morgan Kleiber
PROVIDER: E-GEOD-34305 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA