Testing of the physiological microarray for Calanus finmarchicus by using experimental and field collected samples
Ontology highlight
ABSTRACT: Physiological changes in response to environmental cues are not easily documented in pelagic copepods using traditional methods. Molecular biological tools provide new approaches to the investigation of difficult to sample organisms such as oceanic zooplankton. Here, we describe the development of a species-specific microarray for high-throughput studies of the physiological ecology of the North Atlantic copepod Calanus finmarchicus. An EST database was generated for this species using a normalized cDNA library derived from adult and sub-adult individuals from the Gulf of Maine. Sequence data were clustered into contigs and annotated using Blastx. Target transcripts were selected, and unique, 50 base-pair long, oligomer probes were designed and synthesized for 995 genes. Bioinformatic processing using Blast2GO software provided detailed information on gene function. The selected targets include a broad representation of biological processes, cellular components, and molecular functions. The microarray was tested on both experimental and ecological samples, i.e. food abundance and two morphotypes exhibiting distinct lipid stores, respectively. Differentially regulated transcripts were identified for both comparisons. Two comparisons were performed: 1) Lipid-rich (fat) and Lipid-poor (thin) morphotypes 2) Copepods kept under high food and low food experimental conditions
ORGANISM(S): Calanus finmarchicus
SUBMITTER: Ebru Unal
PROVIDER: E-GEOD-34322 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA