Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by HRG-2
Ontology highlight
ABSTRACT: The roundworm Caenorhabditis elegans is a heme auxotroph that requires the coordinated actions of HRG-1 heme permeases to transport environmental heme into the intestine and HRG-3, a secreted protein, to deliver intestinal heme to other tissues including the embryo. Here we show that heme homeostasis in the extraintestinal hypodermal tissue is facilitated by the transmembrane protein HRG-2. Systemic heme deficiency upregulates hrg-2 mRNA expression over 200-fold in the main body hypodermal syncytium hyp 7. HRG-2 is a type I membrane protein which binds heme and localizes to the endoplasmic reticulum and apical plasma membrane. Cytochrome heme profiles are aberrant in HRG-2 deficient worms, a phenotype that is partially suppressed by heme supplementation. Heme-deficient yeast strain, ectopically expressing worm HRG-2, reveal significantly improved growth at submicromolar concentrations of exogenous heme. Taken together, our results implicate HRG-2 as a facilitator of heme utilization in the C. elegans hypodermis and provide a mechanism for regulation of heme homeostasis in an extraintestinal tissue. Two experimental groups: Group 1: three 4um Controls vs. three 4uM hrg-2 Mutants; Group 2: three 20um Controls vs. three 20uM hrg-2 Mutants
ORGANISM(S): Caenorhabditis elegans
SUBMITTER: WeiPing Chen
PROVIDER: E-GEOD-34471 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA