Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

RNA expression for dcr1D, rdp1D, ago1D and swi6D


ABSTRACT: RNA interference (RNAi) pathways are prevalent throughout the eukaryotic kingdom and well known to regulate gene expression on a post-transcriptional level in the cytoplasm. Less is known about possible functions of RNAi in the nucleus. In the fission yeast Schizosaccharomyces pombe, RNAi is crucial to establish and maintain centromeric heterochromatin and functions to repress genome activity by a chromatin silencing mechanism referred to as co-transcriptional gene silencing (CTGS). Mechanistic details and the physiological relevance of CTGS are unknown. Here we show that RNAi components interact with chromatin at nuclear pores to keep stress response genes in check. We demonstrate that RNAi-mediated CTGS represses stress inducible genes by degrading mRNAs under non-induced conditions. Under chronic heat stress conditions, a Dicer thermoswitch deports Dicer to the cytoplasm, thereby disrupting CTGS and enabling expression of genes implicated in the acquisition of thermotolerance. Taken together, our work highlights a role for nuclear pores and the stress response transcription factor Atf1 in coordinating the interplay between the RNAi machinery and the S. pombe genome and uncovers a novel mode of RNAi regulation in response to an environmental cue. Total RNA extracted from wild-type and mutant strains to compare global expression. At least 2 biological replicates for each sample were performed.

ORGANISM(S): Schizosaccharomyces pombe

SUBMITTER: Katrina Woolcock 

PROVIDER: E-GEOD-36113 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

RNAi keeps Atf1-bound stress response genes in check at nuclear pores.

Woolcock Katrina J KJ   Stunnenberg Rieka R   Gaidatzis Dimos D   Hotz Hans-Rudolf HR   Emmerth Stephan S   Barraud Pierre P   Bühler Marc M  

Genes & development 20120319 7


RNAi pathways are prevalent throughout the eukaryotic kingdom and are well known to regulate gene expression on a post-transcriptional level in the cytoplasm. Less is known about possible functions of RNAi in the nucleus. In the fission yeast Schizosaccharomyces pombe, RNAi is crucial to establish and maintain centromeric heterochromatin and functions to repress genome activity by a chromatin silencing mechanism referred to as cotranscriptional gene silencing (CTGS). Mechanistic details and the  ...[more]

Similar Datasets

2012-03-19 | GSE36167 | GEO
2012-03-19 | GSE36113 | GEO
2024-02-15 | PXD048330 | Pride
2014-01-23 | GSE54194 | GEO
2014-01-23 | GSE54190 | GEO
2014-01-23 | E-GEOD-54194 | biostudies-arrayexpress
| PRJNA153171 | ENA
2014-01-23 | E-GEOD-54190 | biostudies-arrayexpress
2014-12-12 | GSE63301 | GEO
2014-04-10 | E-GEOD-56648 | biostudies-arrayexpress