The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells (ChIP-Seq data)
Ontology highlight
ABSTRACT: Using a mouse model of human MLL-AF9 leukemia, we identified the lysine-specific demethylase KDM1A (LSD1 or AOF2) as an essential regulator of leukemia stem cell (LSC) potential. KDM1A acts at genomic loci bound by MLL-AF9 to sustain expression of the associated oncogenic program, thus preventing differentiation and apoptosis. In vitro and in vivo pharmacologic targeting of KDM1A using tranylcypromine analogues active in the nanomolar range phenocopied Kdm1a knockdown in both murine and primary human AML cells exhibiting MLL translocations. By contrast, the clonogenic and repopulating potential of normal hematopoietic stem and progenitor cells was spared. Our data establish KDM1A as a key effector of the differentiation block in MLL leukemia which may be selectively targeted to therapeutic effect. To investigate the effects of Kdm1a KD on histone modifications, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq) in control and Kdm1a KD MLL-AF9 AML cells for dimethyl-H3K4 and dimethyl-H3K9, as well as for trimethyl-H3K4 and trimethyl-H3K9. Dimethyl-H3K4 and dimethyl-H3K9 are targeted for demethylation by KDM1A. For each of these histone modifications, we compared the mean ChIP-Seq signal across and around protein coding genes bound by the MLL-AF9 oncoprotein (Bernt et al., 2011) with the mean signal from genes not bound by MLL-AF9 expressed at high, middle or low levels.
ORGANISM(S): Mus musculus
SUBMITTER: Tim Somervaille
PROVIDER: E-GEOD-36346 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA