MicroRNA expression profiling of skeletal muscle from PPARalpha- and PPARbeta-overexpressing mice
Ontology highlight
ABSTRACT: This experiment was conducted to identify target microRNAs of the peroxisome proliferator-activated receptor (PPAR) in skeletal muscle of transgenic mice that overexpressed PPARalpha or PPARbeta. We have recently demonstrated that skeletal muscle-specific PPARb transgenic (MCK-PPARb) mice exhibit increased exercise endurance, whereas MCK-PPARa mice have reduced exercise performance. Accordingly, we sought to determine whether PPARb and PPARa drive distinct programs involved in muscle fiber type determination. Myosin heavy chain (MHC) immunohistochemical staining of soleus muscle revealed a marked increase in type 1 fibers in the MCK-PPARb muscle compared to non-transgenic (NTG) littermates but a profound reduction in MCK-PPARa muscle. miRNA profiling revealed that levels of miR-208b and miR-499 were increased in MCK-PPARb muscle but reduced in MCK-PPARa muscle. miR-208b and miR-499, which are embedded in the Myh7 and Myh7b genes, respectively, have been shown previously to regulate slow-twitch muscle genes. Lastly, combined inhibition of miR-208b and miR-499 abolished the enhancing effects of PPARb on MHC1 expression in skeletal myotubes, while forced expression of miR-499 in MCK-PPARa muscle completely reversed the type 1 fiber program and exercise capacity. Taken together, these findings demonstrate that miR-208b and miR-499 are necessary to mediate the effects of PPARb and PPARa on muscle fiber type determination. Comparison of microRNA expression from soleus muscles isolated from wild-type (non-transgenic (NTG)) and PPARalpha-overexpressing (MCK-PPARa) mice, and comparison of microRNA expression from soleus muscles isolated from wild-type (NTG) and PPARbeta-overexpressing (MCK-PPARb) mice. Three replicates of each are analyzed.
ORGANISM(S): Mus musculus
SUBMITTER: Zhenji Gan
PROVIDER: E-GEOD-36498 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA