Methylated DNA immunoprecipitation (MeDIP) microarray data from IL13-induced allergic airway inflammation of mouse lungs
Ontology highlight
ABSTRACT: Epigenetic changes have been implicated in pathogenesis of asthma. We sought to determine if IL13, a key cytokine in airway inflammation and remodeling, induced epigenetic DNA methylation changes in the airways in conjunction with its transcriptional gene regulation. For our studies, we used a well-characterized transgenic mouse model of allergic airway inflammation induced by IL13. In this model, IL13 is conditionally overexpressed in the mouse lung when treated with doxycycline. Upon IL13 induction, these mice showed inflammatory cell infiltration, pronounced emphysema, increased pulmonary compliance, lung volume enlargement, mucus metaplasia, and increased expression of matrix metalloproteinases and cathepsins in the lung. We performed MeDIP microarray to examine the changes in DNA promoter methylation during IL13-induced allergic airway inflammation. The CC10-rtTA-IL13 transgenic (TG) and wildtype (WT) mice were treated with doxycycline for seven days. Mice were euthanized and the left lower lobes from all mice were removed for DNA extraction followed by MeDIP array analysis.
ORGANISM(S): Mus musculus
SUBMITTER: Aik Ooi
PROVIDER: E-GEOD-37079 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA