Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Gene expression profiling using exon arrays during interference with PPAR gamma signaling in thoracic aorta


ABSTRACT: Pharmacological activation of the transcription factor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. In contrast, naturally occurring mutations (e.g., P467L, V290M) in the ligand binding domain of PPAR gamma in humans leads to severe insulin resistance and early-onset hypertension. Experimental evidence, including whole genome expression profiling, suggests that these mutant versions of PPAR gamma act in a dominant negative manner. Because PPAR gamma is expressed in a variety of cell types and tissues, we generated a transgenic mouse model (SP467L) specifically targeting dominant negative PPAR gamma to the vascular smooth muscle cells in order to determine the action of PPAR gamma in the blood vessel independent of its systemic metabolic actions. In the data set provided herein, we examined the gene expression profile in thoracic aorta from SP467L mice and their control littermates using the Affymetrix mouse exon 1.0 ST array. We generated transgenic mice specifically targeting expression of mutant dominant negative human PPAR gamma (P467L) to vascular smooth muscle using a smooth muscle-specific promoter (smooth muscle myosin heavy chain or SMMHC). Thoracic aortas were isolated from 7 male transgenic mice and 5 non-transgenic littermate controls. Total RNA was prepared using conventional methods and quality was assessed using the Bioanalyzer 2100 (Agilent Technologies). For the microarray hybridizations, each sample corresponded to aorta derived from one mouse. All procedures were conducted at the University of Iowa DNA Core facility using standard Affymetrix protocols. In brief, approximately 50 ng of total RNA was used as input to a two-step amplification procedure (NuGen, http://www.nugeninc.com/) to generate biotin-labeled RNA fragments for hybridization to the Affymetrix mouse exon 1.0 ST array.

ORGANISM(S): Mus musculus

SUBMITTER: Henry Keen 

PROVIDER: E-GEOD-37195 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Dominant negative PPARγ promotes atherosclerosis, vascular dysfunction, and hypertension through distinct effects in endothelium and vascular muscle.

Pelham Christopher J CJ   Keen Henry L HL   Lentz Steven R SR   Sigmund Curt D CD  

American journal of physiology. Regulatory, integrative and comparative physiology 20130227 9


Agonists of the nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) have potent insulin-sensitizing effects and inhibit atherosclerosis progression in patients with Type II diabetes. Conversely, missense mutations in the ligand-binding domain of PPARγ that render the transcription factor dominant negative (DN) cause early-onset hypertension and Type II diabetes. We tested the hypothesis that DN PPARγ-mediated interference of endogenous wild-type PPARγ in the endothelium  ...[more]

Similar Datasets

2012-10-03 | E-GEOD-37194 | biostudies-arrayexpress
2012-09-24 | E-GEOD-36482 | biostudies-arrayexpress
2012-10-03 | GSE37195 | GEO
2012-10-03 | GSE37194 | GEO
2012-10-03 | E-GEOD-37196 | biostudies-arrayexpress
2012-09-24 | GSE36482 | GEO
2007-12-12 | GSE8949 | GEO
2008-06-16 | E-GEOD-8949 | biostudies-arrayexpress
2008-07-23 | GSE11870 | GEO
2008-10-21 | E-GEOD-11870 | biostudies-arrayexpress