Project description:The DNA methylation patterns associated with the development and progression of cancer. The aim of the present study was to identify novel methylation markers that can discriminate between normal and Non-muscle-invasive bladder cancer (NMIBC), and between good and poor prognosis using microarray analysis of DNA methylation and RNA expression patterns in NMIBC patients. From the 24 matched microarray-based DNA methylation and gene expression profiling data set, tumor specific hypermethylated genes were selected and clinical relevance of these genes were verified by quantitative PQS analyses. Methylation statues of several genes were significantly associated with decreased gene expression levels and aggressive clinicopathological characteristics. In multivariate regression analyses, hypermethylation of these genes were the independent predictors of recurrence and progression. Genomic DNA was extracted by standard methods using the Wizard Genomic DNA Purification System (Promega, Madison, WI). Total RNA was extracted with TRIzol reagent (Life Technologies, NY) according to the manufacturer’s protocol. Methylation patterns were assayed using the genome-wide Illumina Infinium HumanMethylation27 BeadChip array (Illumina Inc., San Diego, CA). Methylation assays were carried out according to the manufacturer’s protocol. Bisulfite conversion of genomic DNA was performed using the EZ DNA Methylation Kit (Zymo Research, Orange, CA). Fluorescence signals corresponding to C or T nucleotides were measured and the data were used to assign a quantitative measure of methylation level (β value). The β value is a quantitative measure of DNA methylation levels of specific CpGs and ranges from 0 for completely unmethylated to 1 for completely methylated.
Project description:Microarray-based DNA methylation and gene expression profiling was carried out using a panel of prostate cancer cell lines (LNCaP-FGC, DU-145, and PC-3) and the control normal prostate RWPE1 cell line. The identification of prostate cancer-specific methylation markers was based on the following criteria: a difference in DNA methylation level (β) of at least 0.5, and at least a 2-fold difference in expression level between cancer and control cells. Using highly stringent selection criteria, we identified novel hypermethylated genes whose expression was silenced in prostate cancer cells. Genomic DNA was extracted by standard methods using the Wizard Genomic DNA Purification System (Promega, Madison, WI). Total RNA was extracted with TRIzol reagent (Life Technologies, NY) according to the manufacturer’s protocol. Methylation patterns were assayed using the genome-wide Illumina Infinium HumanMethylation27 BeadChip array (Illumina Inc., San Diego, CA). Methylation assays were carried out according to the manufacturer’s protocol. Bisulfite conversion of genomic DNA was performed using the EZ DNA Methylation Kit (Zymo Research, Orange, CA). Fluorescence signals corresponding to C or T nucleotides were measured and the data were used to assign a quantitative measure of methylation level (β value). The β value is a quantitative measure of DNA methylation levels of specific CpGs and ranges from 0 for completely unmethylated to 1 for completely methylated. For the integrated analysis of global methylation status and gene expression levels, we used the genome-wide HumanHT-12 Gene Expression BeadChip (Illumina Inc., San Diego, CA). Gene expression analysis was performed according to the manufacturer’s protocol. Five hundred nanograms of total RNA were used for labeling hybridization according to the manufacturer’s protocol. Arrays were scanned with an Illumina Bead Array Reader confocal scanner (BeadStation 500GXDW; Illumina Inc., San Diego, CA), according to the manufacturer's instructions. Initial microarray gene expression data were obtained using the gene expression analysis module of Bead Studio software (version 3.1.3, Illumina Inc., San Diego, CA).
Project description:DNA methylation and hydroxymethylation have been implicated in normal development and differentiation, but our knowledge about the genome-wide distribution of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) during cellular differentiation remains limited. Using in vitro model system of gradual differentiation of human embryonic stem (hES) cells into ventral midbrain-type neural precursor (NP) cells and terminally into dopamine (DA) neurons, we explored changes in 5mC or 5hmC patterns during lineage commitment. We used three techniques, 450K DNA methylation array, MBD-seq, and hMeDIP-seq, and found combination of these methods can provide comprehensive information on the genome-wide 5mC or 5hmC patterns. We observed dramatic changes of 5mC patterns during differentiation of hES cells into NP cells. Although genome-wide 5hmC distribution was more stable than 5mC, coding exons, CpG islands and shores showed dynamic 5hmC patterns during differentiation. In addition to the role of DNA methylation as a mechanism to initiating gene silencing, we also found DNA methylation as a locking system to maintain gene silencing. More than 1,000 genes including mesoderm development related genes acquired promoter methylation during neuronal differentiation even though they were already silenced in hES cells. Finally, we found that activated genes lost 5mC in transcription start site (TSS) but acquired 5hmC around TSS and gene body during differentiation. Our findings may provide clues for elucidating the molecular mechanisms underlying lineage specific differentiation of pluripotent stem cells during human embryonic development. Examination of hMeDIP-Seq and MBD-Seq in 3 cell types (human embryonic stem, neural precursor, and dopamine neuron cells)
Project description:The identification of surrogate methylation markers that can predict responses to preoperative chemoradiotherapy (CRT) in rectal cancer patients. Genome-wide association studies in clinical populations are theoretically capable of identifying markers that are capable of tumor regression after CRT. We used InfiniumM-BM-. Methylation Assay to detail methylation status of patientM-bM-^@M-^Ys group showing differential responsiveness to preoperative CRT and profiled SNP biomarkers. The chemoradiosensitivity of tumor tissue from the initial cohort of 45 patients was assessed using clinical responses of tumor regression grade (TRG). TRG was clinically categorized as complete response (CR) as TRG 1, dominant response (ER or finally as DR) as TRG 1 and 2, and efficient response (RYN or finally as ER) as TRG 1, 2, and 3 (TRG grade from Mandard et al, 1994). Examination of genome-wide DNA methylation in 45 colon cancer tissues. We separated patients into TRG1,2,3,4 and 5 group after chemoradiotherapy(CRT). As proposed by Mandard et al. TRG 1, complete tumor response; TRG2, residual cancer cells scattered through fibrosis; TRG 3, an increased number of residual cancer cells, with predominant fibrosis; TRG 4, residual cancer outgrowing fibrosis; and TRG 5, no regressive changes within the tumor: Responders (TRG 1 and 2) and nonresponders (TRG 3?5). Mandard et al. Cancer 1994 Group 1 and Group 2 in ER, CR and RYN was divided by TRG classification. CR: group 1 - TRG 2,3,4 and 5; group 2 - TRG 1 ER: group 1 - TRG 3,4,5; group 2 - TRG 1 and 2 RYN: group 1 - TRG 4 and 5; group 2 - TRG 1,2 and 3
Project description:Forensic body fluid identification is important for crime scene reconstruction. We used Illumina HumanMethylation 450K bead array containing over the 450,000 CpG sites in 16 body fluid samples to find novel DNA methylation marker for forensic body fluid identification. Examination of genome-wide DNA methylation profiling in 16 body fluid samples
Project description:DNA methylation and hydroxymethylation have been implicated in normal development and differentiation, but our knowledge about the genome-wide distribution of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) during cellular differentiation remains limited. Using in vitro model system of gradual differentiation of human embryonic stem (hES) cells into ventral midbrain-type neural precursor (NP) cells and terminally into dopamine (DA) neurons, we explored changes in 5mC or 5hmC patterns during lineage commitment. We used three techniques, 450K DNA methylation array, MBD-seq, and hMeDIP-seq, and found combination of these methods can provide comprehensive information on the genome-wide 5mC or 5hmC patterns. We observed dramatic changes of 5mC patterns during differentiation of hES cells into NP cells. Although genome-wide 5hmC distribution was more stable than 5mC, coding exons, CpG islands and shores showed dynamic 5hmC patterns during differentiation. In addition to the role of DNA methylation as a mechanism to initiating gene silencing, we also found DNA methylation as a locking system to maintain gene silencing. More than 1,000 genes including mesoderm development related genes acquired promoter methylation during neuronal differentiation even though they were already silenced in hES cells. Finally, we found that activated genes lost 5mC in transcription start site (TSS) but acquired 5hmC around TSS and gene body during differentiation. Our findings may provide clues for elucidating the molecular mechanisms underlying lineage specific differentiation of pluripotent stem cells during human embryonic development. Examination of genome-wide DNA methylation in 3 cell types (human embryonic stem, neural precursor, and dopamine neuron cells)
Project description:Pathologic differentiation of tissue of origin in tumors found in the lung can be challenging, with differentiation of mesothelioma and lung adenocarcinoma emblematic of this problem. Indeed, proper classification is essential for determination of treatment regimen for these diseases, making accurate and early diagnosis critical. Here we investigate the potential of epigenetic profiles of lung adenocarcinoma, mesothelioma, and non-malignant pulmonary tissues (n=285) as differentiation markers in an analysis of DNA methylation at 1413 autosomal CpG loci associated with 773 cancer-related genes. Using an unsupervised recursively-partitioned mixture modeling technique for all samples, the derived methylation profile classes were significantly associated with sample type (P < 0.0001). In a similar analysis restricted to tumors, methylation profile classes significantly predicted tumor type (P < 0.0001). Random forests classification of CpG methylation of tumors - which splits the data into training and test sets - accurately differentiated MPM from lung adenocarcinoma over 99% of the time (P < 0.0001). In a locus-by-locus comparison of CpG methylation between tumor types, 1266 CpG loci had significantly different methylation between tumors following correction for multiple comparisons (Q < 0.05); 61% had higher methylation in adenocarcinoma. Using the CpG loci with significant differential methylation in a pathways analysis revealed significant enrichment of methylated gene-loci in Cell Cycle Regulation, DNA Damage Response, PTEN Signaling, and Apoptosis Signaling pathways in lung adenocarcinoma when compared to mesothelioma. Methylation-profile-based differentiation of lung adenocarcinoma and mesothelioma is highly accurate, informs on the distinct etiologies of these diseases, and holds promise for clinical application. Mesotheliomas (n=158) and grossly non-tumorigenic parietal pleura (n=18) were obtained following surgical resection at Brigham and Womenâ??s Hospital through the International Mesothelioma Program from a pilot study conducted in 2002 (n=70) and an incident case series beginning in 2005 (n=88) with a participation rate of 85%. We used biopsy specimens from patients treated for NSCLC at the Massachusetts General Hospital from 1992 â?? 1996 (18) including lung adenocarcinomas (n=57) and non-malignant pulmonary tissues (n=48) (of which 22 (39%) were taken from the adenocarcinoma patients) (18). Additional normal lung tissues were obtained from the National Disease Research Interchange from donors free of lung malignancy (n=4).
Project description:Integrated profiling of somatic molecular alterations present in tumors is necessary to further our understanding of the tumorigenic process. We investigated the potential relationships between gene copy number alterations and DNA methylation profiles in a case series of pleural mesotheliomas (n=23). Gene copy number (CN) alterations profiled with 500K SNP arrays and DNA methylation measured at over 750 cancer-related genes with methylation bead-arrays were examined concomitantly. Considering each probed locus, there were no instances of significantly correlated CN alteration and methylation (no loci with Q < 0.05) and averaging loci over their associated genes revealed only two genes with significantly correlated CN and methylation alterations (Q < 0.04). In contrast to the lack of discrete correlations, the overall extent of tumor CN alteration was significantly associated with DNA methylation profile when comparing CN alteration extent among methylation profile classes (P < 0.02), and there was evidence that this association was partially attributable to prevalent allele loss observed at the maintenance DNA methyltransferase DNMT1. Taken together, this work indicates a strong association between global genetic and global epigenetic dysregulation in mesothelioma rather than a discrete, local coordination of gene inactivation, and further highlights the utility and necessity of integrative genomics approaches in cancer biology. Mesotheliomas were obtained following surgical resection at Brigham and Women’s Hospital through the International Mesothelioma Program from a pilot study conducted in 2002 and an incident case series beginning in 2005 as previously described (PMIDs: 19118007 and 19638575). All patients provided informed consent under the approval of the appropriate Institutional Review Boards. Clinical information, including histologic diagnosis was obtained from pathology reports. The study pathologist confirmed the histologic diagnoses and further assessed the percent tumor from resected specimens (mean >60%). DNA extraction and methylation analysis: DNA from fresh frozen tissue and matched whole blood was isolated with QIAamp DNA mini kit (Qiagen, Valencia, CA) following the manufacturer’s protocol. Tumor DNA was modified with sodium bisulfite using the EZ DNA Methylation Kit (Zymo Research, Orange, CA). Illumina GoldenGate® methylation bead arrays interrogated 1505 CpG loci associated with 803 cancer-related genes processed at the UCSF Institute for Human Genetics, Genomics Core Facility using methods described in (28). The GoldenGate methylation data used in the analysis has been previously described (PMIDs: 19118007 and 19638575).
Project description:We report a method for specific capture of an arbitrary subset of genomic targets for single molecule bisulfite sequencing, and for digital quantitation of DNA methylation at a single nucleotide resolution. We used targeted bisulfite sequencing to characterize the changes of DNA methylation during the de-differentiation of human fibroblasts into hybrid stem cells, and into induced pluripotent stem cells. We compared the methylation level of approximately 66,000 CpG sites within 2020 CpG islands on chromosome 12, chromosome 20, and 34 selected regions. A total of 288 differentially methylated regions were identified between fibroblasts and pluripotent cells. Methylation cluster analysis revealed distinct methylation patterns between fibroblasts and pluripotent cells. Furthermore iPS cells are globally more methylated than human embryonic stem cells, which could be due to the reprogramming process. This targeted bisulfite sequencing method is particularly useful for efficient and large-scale analysis of DNA methylation in organisms with large genomes. Experiment Overall Design: Comparison of DNA methylation on 2020 CpG islands and 34 other selected regions among eleven human ES, iPS and fibroblast lines.
Project description:DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. The extent to which individual Tet family members contribute to the genome-wide 5mC and 5hmC patterns and associated gene network remains largely unknown. Here we report genome-wide mapping of Tet1 and 5hmC in mESCs and reveal a mechanism of action by which Tet1 controls 5hmC and 5mC levels in mESCs. In combination with microarray and mRNA-seq expression profiling, we identify a comprehensive yet intricate gene network influenced by Tet1. We propose a model whereby Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting the existing 5mC to 5hmC through its enzymatic activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 target loci, thereby providing a new regulatory mechanism for establishing the epigenetic landscape of mESCs, which ultimately contributes to mESC differentiation and the onset of embryonic development. To determine the genome-wide DNA methylation changes caused by Tet1 depletion in mouse ES cells. Tet1 protein was depleted by specific siRNA treatment. The DNA methylation levels in control and Tet1 siRNA-transfected ES cells were determined by targeted bisulfite sequencing.