Study functions of ADAR proteins using next generation sequencing of genome and transcriptome
Ontology highlight
ABSTRACT: Adenosine deaminases, RNA specific (ADAR) are proteins that deaminate adenosine to inosine which is then recognized in translation as guanosine. To study the roles of ADAR proteins in RNA editing and gene regulation, we carried out DNA and RNA sequencing, RNA interference and RNA-immunoprecipitation in human B-cells. We also characterized the ADAR protein complex by mass spectrometry. The results uncovered over 60,000 sites where the adenosines (A) are edited to guanosine (G) and several thousand genes whose expression levels are influenced by ADAR. We also identified more than 100 proteins in the ADAR protein complex; these include splicing factors, heterogeneous ribonucleoproteins and several members of the dynactin protein family. Our findings show that in human B-cells, ADAR proteins are involved in two independent functions: A-to-G editing and gene expression regulation. In addition, we showed that other types of RNA-DNA sequence differences are not mediated by ADAR proteins, and thus there are co- or post-transcriptional mechanisms yet to be determined. Here we studied human B-cells where ADAR proteins (ADAR1 and ADAR2) are expressed but APOBECs are not. We identified the sequence differences between DNA and the corresponding RNA in B-cells from two individuals. Then, we carried out RNA interference, RNA-immunoprecipitation and next generation sequencing to determine the contribution of ADAR proteins in mediating A-to-G editing and other types of RNA-DNA sequence differences.
ORGANISM(S): Homo sapiens
SUBMITTER: Isabel Wang
PROVIDER: E-GEOD-38233 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA