Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal.
Ontology highlight
ABSTRACT: The expansion of the neocortex during mammalian brain evolution results primarily from an increase in neural progenitor cell divisions in its two principal germinal zones during development, the ventricular zone (VZ) and the subventricular zone (SVZ). Using mRNA sequencing, we analyzed the transcriptomes of fetal human and embryonic mouse VZ, SVZ and cortical plate (CP). We describe sets of genes that are up- or down-regulated in each germinal zone. These data suggest that cell adhesion and cell-extracellular matrix (ECM) interactions promote the proliferation and self-renewal of neural progenitors in the developing human neocortex. Notably, relevant ECM-associated genes include distinct sets of collagens, laminins, proteoglycans and integrins, along with specific sets of growth factors and morphogens. Our data establish a basis for identifying novel cell-type markers and open up avenues to unravel the molecular basis of neocortex expansion during evolution. Total RNA was isolated from the VZ, inner SVZ (ISVZ), outer SVZ (OSVZ) and CP of six 13-16 weeks post-conception (w.p.c.) human fetuses and from the VZ, SVZ and CP of five E14.5 mouse embryos using laser capture microdissection of Nissl-stained cryosections of dorsolateral telencephalon. Poly A+ RNA was used as template for the preparation of cDNA which were then subjected to single-end 76-bp RNA-Seq.
ORGANISM(S): Homo sapiens
SUBMITTER: Martin Kircher
PROVIDER: E-GEOD-38805 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA