An RNA-interacting protein network regulates pluripotency in mammalian primordial germ cells (Dazl knockdown)
Ontology highlight
ABSTRACT: Primordial germ cells (PGCs) are the embryonic precursors to egg and sperm. When removed from the embryonic gonad, PGCs can give rise to embryonic germ cell lines (EGs), pluripotent stem cells that display most of the characteristics of embryonic stem cells (ESCs) including the ability to form teratomas and to contribute to chimera formation. In mice, EG cells can be derived between E8.5 up to E12.5 of embryonic development, at which point the PGCs undergo sexual differentiation and in the male transition into unipotent gonocytes. Dazl, a germ cell-specific RNA-binding protein, is specifically expressed in developing PGCs and is required for proper germ cell development. Dazl knockout mice are infertile, but the molecular mechanisms underlying this phenotype are still unknown. Here we demonstrate that Dazl localizes in granular structures in mammalian PGCs but not in ESCs. We demonstrate Dazl plays a central role in a large mRNA/protein interactive network that includes members of Fragile-X family RNA-binding proteins. We demonstrate that Dazl and Fxr1 play a central role in these granules and directly regulate the translation of specific core pluripotency factors, including Sox2 and Suz12. Global gene expression changes following Dazl knockdown in in vitro primordial germ cells. In vitro primordial germ cells carrying control and Dazl knockdown shRNAs were generated from Oct4-GFP ES cells and isolated by FACS analysis. The global gene expression profiles were analyzed by Agilent Mouse Whole Genome 4X44K one-color microarrays.
ORGANISM(S): Mus musculus
SUBMITTER: Niels Geijsen
PROVIDER: E-GEOD-39535 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA