Zygotic gene activatory network in zebrafish is globally controlled by Pou5f1 SoxB1 enhancers
Ontology highlight
ABSTRACT: Genetic control of pluripotent mammalian ES cells is determined by a transcriptional network, with a "central core" of transcription factors, Pou5f1, Sox2 and Nanog. Zebrafish homologues of the "core pluripotency factors" Pou5f1, SoxB1 and Nanog-like are also crucially involved in early development. However, the degree of functional similarity of the network between mammals and non-mammals is a matter of debate. To identify the components of Pou5f1-dependent transcriptional networks, we determined the genomic binding sites for Pou5f1 and Sox2 in late blastula stage zebrafish embryos using ChIP-seq. We found that Sox2 and Pou5f1 are co-binding to the regulatory regions of Sox2, Pou5f1, and Nanog-like, as well as to multiple orthologues of mammalian plutipotency network components. Deep sequencing was performed using the Illumina GAIIx on DNA samples obtained from Sox2 ChIP, Pou5f1-Flag ChIP and Input Control. Pou5f1 was analysed in technical duplicates to obtain higher sequencing depth.
ORGANISM(S): Danio rerio
SUBMITTER: Manuel Leichsenring
PROVIDER: E-GEOD-39780 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA