Expression profile of lung adenocarcinoma, A549 cells following induction of non metastatic 2 (NME2/NM23 H2)
Ontology highlight
ABSTRACT: It is widely believed that reorganization of nucleosomes result in availability of binding sites that engage transcription factors during eukaryotic gene regulation. Recent findings, on the other hand, suggest that transcription factors induced as a result of physiological perturbations directly (or in association with chromatin modifiers) may alter nucleosome occupancy to facilitate DNA binding. Although, together these suggest a close relationship between transcription factor binding and nucleosome reorganization, the nature of the inter-dependency, or to what extent it influences regulatory transcription is not clear. Moreover, since most studies used physiolgical pertubations that induced multiple transcription factor chromatin modifiers, the relatively local (or direct) effect of transcription factor binding on nucleosome occupancy remains unclear. With these in mind, we used a single transcription factor to induce physiological changes, representing metastatic (aggressive cancer) and the corresponding non-metastatic state, in human cancer cells. Following characterization of the two states (before and after induction of the transcription factor) we determined: (a) genome wide binding sites of the transcription factor, (b) promoter nucleosome occupancy and (c) transcriptome profiles, independently in both conditions. Interestingly, we find only ~20% of TF binding results from nucleosome reorganization - however, almost all corresponding genes were transcriptionally altered. Whereas, in cases where TF-occupancy was independent of nucleosome repositioning (in close vicinity), or co-occurred with nucleosomes, only a small fraction of the corresponding genes were expressed/repressed. Together, these indicate a model where TF occupancy only when coupled with nucleosome repositioning in close proximity is transcriptionally active. This, to our knowledge, for the first time also helps explain why genome wide TF occupancy (e.g., from ChIP-seq) is typically associated with only a small fraction of genes that change expression. For expression profiling of cells in NME2-induced conditions, A549 cells were transfected with pcDNA-NME2-MYC or pcDNA-MYC (control). RNA was isolated from the cells 48h after transfection using the trizol method (Sigma) as per manufacturerM-bM-^@M-^Ys protocol. Total RNA was processed to hybridize to Illumina Human HT-12 v4 Expression BeadChip as per manufacturerM-bM-^@M-^Ys instructions. Three biological replicates were averaged and data was analyzed using BeadStudio (P <0.05 of fold change).
ORGANISM(S): Homo sapiens
SUBMITTER: Vinod Yadav
PROVIDER: E-GEOD-40194 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA