Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Hippocampal gene expression profiling in a rat model of posttraumatic epilepsy reveals temporal upregulation of lipid metabolism-related genes


ABSTRACT: Traumatic brain injury occasionally causes posttraumatic epilepsy. To elucidate the molecular events responsible for posttraumatic epilepsy, we established a rodent model that involved the injection of microliter quantities of FeCl3 solution into the amygdalar nuclear complex. We previously compared hippocampal gene expression profiles in the traumatic epilepsy model and normal rats at 5 days after brain injury (acute phase) and observed the role of inflammation. In this study, we focused on later stages of epileptogenesis. We compared gene expression profiles at 5, 15 (sub-chronic phase), and 30 days (chronic phase) after brain injury to identify temporal changes in molecular networks involved in epileptogenesis. A total of 81 genes was significantly (at least 2-fold) up- or downregulated over the course of disease progression. We found that genes related to lipid metabolism, namely, Apoa1, Gh, Mc4r, Oprk1, and Pdk4, were temporarily upregulated in the sub-chronic phase. Changes in lipid metabolism regulation might be related to seizure propagation during epileptogenesis. This temporal description of hippocampal gene expression profiles throughout epileptogenesis provides clues to potential markers of disease phases and new therapeutic targets. We employed amygdalar FeCl3 injection to induce chronic, recurrent limbic-type partial seizures with spontaneous secondarily generalized seizures in rats . Sixteen male Wistar rats were kept in hanging cages with unlimited access to food and water and 12-h light-dark cycles. Surgical procedures were conducted following anesthesia with intraperitoneal (i.p.) sodium pentobarbital injections (37.5 mg/kg) at 5 weeks of age. Stereotaxic coordinates were determined with the rat brain atlas. The incisor bar was set 3.3 mm below the interaural line. While under anesthesia, a polyethylene tube containing a stylet to serve as an external guide cannula (1.09-mm outer diameter (o.d.), 0.55-mm inner diameter (i.d.), 2.5 cm in length) was stereotaxically implanted and anchored to the skull with miniature screws and dental cement. The cannula was fixed 5.6 mm anterior and 4.8 mm to the right of the lambda and 8.5 mm below the surface of the skull, positioning it at the right amygdaloid body. Randomly selected rats for in vivo microdialysis to estimate redox had guide cannula placed but were prepared without dental cement on the skull where the microdialysis guide cannula was to be placed. Five days later, the stylet was replaced with an internal delivery cannula (0.5 mm o.d., 0.25 mm i.d.). FeCl3 was dissolved in saline solution (100 mM, pH 2.2). FeCl3 solution (1.0 M-NM-

ORGANISM(S): Rattus norvegicus

SUBMITTER: Toshio Kojima 

PROVIDER: E-GEOD-40490 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2012-12-31 | GSE40490 | GEO
2010-02-09 | E-GEOD-14763 | biostudies-arrayexpress
2010-02-09 | GSE14763 | GEO
2022-10-06 | GSE213393 | GEO
2020-03-22 | GSE139106 | GEO
2005-03-01 | GSE2216 | GEO
2008-06-11 | E-GEOD-1831 | biostudies-arrayexpress
2008-06-11 | E-GEOD-1834 | biostudies-arrayexpress
2004-10-14 | GSE1831 | GEO
2013-09-07 | E-GEOD-50664 | biostudies-arrayexpress