Integrated detection of both 5-mC and 5-hmC by high-throughput tag sequencing technology highlights methylation reprogramming of bivalent genes during cellular differentiation [DGE]
Ontology highlight
ABSTRACT: 5-methylcytosine (5-mC) can be oxidized to 5-hydroxymethylcytosine (5-hmC). Genome-wide profiling of 5-hmC thus far indicated 5-hmC may not only be an intermediate form of DNA demethylation but could also constitute an epigenetic mark per se. We describe a cost-effective and selective method to detect both the hydroxymethylation and methylation status of cytosines in more than 1.8 million MspI sites in the human genome. This method involves the selective glucosylation of 5-hmC residues, short-sequence tag generation and high-throughput sequencing. We tested this method by screening H9 human embryonic stem cells and their differentiated embroid body cells, and found that differential hydroxymethylation preferentially occur in bivalent genes during cellular differentiation. Especially, our results support hydroxymethylation can regulate key transcription regulators with bivalent marks through demethylation and affect cellular decision on choosing active or inactive state of these genes upon cellular differentiation. In order to explore the role of methylation and hyroxymethylation in regulating gene expression upon cellular differentiation to EBs, we examined the gene expression level in H9 human embryonic stem cells and their differentiated embroid body cells by Digital gene expression (DGE), respectively.
ORGANISM(S): Homo sapiens
SUBMITTER: Yudong Xia
PROVIDER: E-GEOD-40953 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA