Project description:Mapping the occupancy of FNR, HNS, and IHF throughout the genome of Escherchia coli MG1655 K-12 using an affinity purified antibody under anerobic growth conditions. We also mapped the binding of the M-CM-^_ subunit of RNA Polymerase under both aerobic and anaerobic growth conditions. As a control, we also performed ChIP-chip on FNR in a M-bM-^HM-^Ffnr mutant strain of Escherchia coli MG1655 K-12. We also examined FNR immunoprecipitation at various FNR concentrations using IPTG and Ptac::fnr (PK8263). The M-bM-^HM-^Fhns/M-bM-^HM-^FstpA strains were also used. Descirbed in the manuscript Genome-scale Analysis of E. coli FNR Reveals the Complexity of Bacterial Regulon Structure Mapping of occupancy of FNR, NNS, IHF and M-CM-^_ of RNAP in the genome of Escherchia coli MG1655 K-12 under aerobic or anaerobic growth conditions. Immunoprecipitated DNA compared to INPUT for each sample.
Project description:Mapping the occupancy of ArcA throughout the genome of Escherchia coli MG1655 K-12 using an affinity purified antibody under anaerobic and aerobic growth conditions. As a control, we also performed ChIP-chip onArcA in a M-bM-^HM-^FarcA mutant strain of Escherchia coli MG1655 K-12. Described in the manuscript The response regulator ArcA uses a diverse binding site architechture to globally regulate carbon oxidation in E. coli Mapping of occupancy of ArcA in the genome of Escherchia coli MG1655 K-12 during anaerobic fermentation and aerobic respiration. Immunoprecipitated DNA compared to INPUT for each sample.
Project description:We found many binding sites for ArcA under glucose fermentative anaerobic growth conditions. Descirbed in the manuscript "The response regulator ArcA uses a diverse binding site architechture to globally regulate carbon oxidation in E. coli" Examination of occupancy of ArcA under anaerobic growth conditions.
Project description:We found many binding sites for FNR under glucose fermentative anaerobic growth conditions. Also, many binding sites were identified for M-OM-^C70 under both aerobic and anaerobic growthin conditions. Descirbed in the manuscript "Genome-scale Analysis of E. coli FNR Reveals the Complexity of Bacterial Regulon Structure" Examination of occupancy of FNR adn M-OM-^C70 under aerobic and anaerobic growth in conditions.
Project description:In bacteria, translation-transcription coupling inhibits RNA polymerase (RNAP) stalling. We present evidence suggesting that, upon amino acid starvation, inactive ribosomes promote rather than inhibit RNAP stalling. We developed an algorithm to evaluate genome-wide polymerase progression independently of local noise, and used it to reveal that the transcription factor DksA inhibits promoter-proximal pausing and increases RNAP elongation when uncoupled from translation by depletion of charged tRNAs. DksA has minimal effect on RNAP elongation in vitro and on untranslated RNAs in vivo. In these cases, transcripts can form RNA structures that prevent backtracking. Thus, the effect of DksA on transcript elongation may occur primarily upon ribosome slowing/stalling or at promoter-proximal locations that limit the potential for RNA structure. We propose that inactive ribosomes prevent formation of backtrackblocking mRNA structures and that, in this circumstance, DksA acts as a transcription elongation factor in vivo. Chromatin immunoprecipitation (ChIP) experiments were performed by using antibodies against RNA polymerase b subunit in wild-type and DdksA cells treated with 0.5mg/ml serine hydroxamate (SHX) or untreated. DksA and s70 enrichments were compared to RNAP enrichment by ChIP experiments using antibodies against s70 and DksA in wild-type cells (also in DdksA cells as a negative control for DksA ChIP-chip). Differentially labeled ChIP DNA and genomic DNA were competitively hybridized to an E. coli K-12 MG1655 tiling array with overlapping probes at ~12bp spacing across the entire genome. The series contains 19 datasets.
Project description:Despite the prevalence of antisense transcripts in bacterial transcriptomes, little is known about how their synthesis is controlled. We report that a major function of the Escherichia coli termination factor Rho and its co-factor NusG is suppression of ubiquitous antisense transcription genome-wide. Rho binds C-rich unstructured nascent RNA (high C/G ratio) prior to its ATP-dependent dissociation of transcription complexes. NusG is required for efficient termination at minority subsets (~20%) of both antisense and sense Rho-dependent terminators with lower C/G ratio sequences. In contrast, a widely studied nusA deletion proposed to compromise Rho-dependent termination had no effect on antisense or sense Rho-dependent terminators in vivo. Global co-localization of the nucleoid-associated protein H-NS with Rho-dependent terminators and genetic interactions between hns and rho suggest that H-NS aids Rho in suppression of antisense transcription. The combined actions of Rho, NusG, and H-NS appear to be analogous to the Sen1-Nrd1-Nab3 and nucleosome systems that suppress antisense transcription in eukaryotes. Chromatin immunoprecipitation (ChIP) experiments were performed using antibodies against RNA polymerase (RNAP; Beta subunit) in wild-type cells or cells deleted for hns, nusG, or a partial deletion of nusA. Differentially labeled ChIP DNA and genomic DNA were competitively hybridized to an E. coli K-12 MG1655 tiling array with overlapping probes at ~12bp spacing across the entire genome. The series contains 12 datasets.
Project description:The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although the AraC family transcription factor VqsM has been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we report that VqsM directly binds to the lasI promoter region, and thus regulates its expression. To identify additional targets of VqsM in P. aeruginosa PAO1, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) which detected 48 enriched loci harboring VqsM-binding peaks in P. aeruginosa genome. The direct regulation of these genes by VqsM has been confirmed by Electrophoretic mobility shift assays (EMSAs) and quantitative real-time polymerase chain reactions (qRT-PCR). A VqsM-binding motif is found by using MEME suite and verified by footprint assays in vitro. In addition, VqsM directly binds to the promoter regions of antibiotic resistance regulator NfxB and the master type III system regulator ExsA. Notably, the vqsM mutant displayed more resistance to two types of antibiotics and promoted bacterial survival in a mouse model, compared to the wild type PAO1 strain. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems, T3SS, and antibiotic resistance. Pseudomonas aeruginosa MAPO1 containing empty pAK1900 or pAK1900-VqsM-VSV
Project description:The transcription termination factor Rho is a global regulator of RNA polymerase (RNAP). Although individual Rho-dependent terminators have been studied extensively, less is known about the sites of RNAP regulation by Rho on a genome-wide scale. Using chromatin immunoprecipitation and microarrays (ChIP-chip), we examined changes in the distribution of Escherichia coli RNAP in response to the Rho-specific inhibitor bicyclomycin (BCM). We found ~200 Rho-terminated loci that were divided evenly into two classes: intergenic (at the ends of genes) and intragenic (within genes). The intergenic class contained noncoding RNAs such as small RNAs (sRNAs) and transfer RNAs (tRNAs), establishing a previously unappreciated role of Rho in termination of stable RNA synthesis. The intragenic class of terminators included a novel set of short antisense transcripts, as judged by a shift in the distribution of RNAP in BCM-treated cells that was opposite to the direction of the corresponding gene. These Rho-terminated antisense transcripts point to a novel role of noncoding transcription in E. coli gene regulation that may resemble the ubiquitous noncoding transcription recently found to play myriad roles in eukaryotic gene regulation. Chromatin immunoprecipitation (ChIP) experiments were performed using antibodies against RNA polymerase (Beta or Beta' subunit) in cells treated with 20ug/ml bicyclomycin or untreated cells. Differentially labeled ChIP DNA and genomic DNA were competitively hybridized to an E. coli K-12 MG1655 tiling array with overlapping probes at ~12bp spacing across the entire genome. The series contains 4 datasets.
Project description:The in vivo trafficking patterns on DNA by the bacterial regulators of transcript elongation Sigma70, Rho, NusA, and NusG and the explanation for high promoter-proximal levels or peaks of RNA polymerase (RNAP) are unknown. Genome-wide ChIP-chip on E. coli revealed distinct association patterns of regulators as RNAP transcribes away from promoters (Rho first, then NusA, and then NusG). However, the interactions of elongating complexes with these regulators, including a weak interaction with Sigma70, did not differ significantly among most transcription units. A modest variation of NusG signal among genes reflected increased NusG interaction as transcription progresses, rather than functional specialization of elongating complexes. Promoter-proximal RNAP peaks were offset from Sigma70 peaks in the direction of transcription and co-occurred with NusA and Rho peaks, suggesting that the RNAP peaks reflected elongating, rather than initiating, complexes. However, inhibition of Rho did not increase RNAP levels within genes downstream of the RNAP peaks, suggesting the peaks are caused by a mechanism other than simple Rho-dependent attenuation. Chromatin immunoprecipitation (ChIP) experiments were performed using antibodies against RNA polymerase (Beta' subunit), Sigma70, NusA, NusG, or Rho. Differentially labeled ChIP DNA and genomic DNA were competitively hybridized to an E. coli K-12 MG1655 tiling array with overlapping probes at ~24bp spacing across the entire genome. The series contains 17 total datasets.