Accelerated growth in the absence of DNA replication origins
Ontology highlight
ABSTRACT: DNA replication initiates at defined sites called origins, which serve as binding sites for initiator proteins that recruit the replicative machinery. Origins differ in number and structure across the three domains of life1 and their properties determine the dynamics of chromosome replication. Bacteria and some archaea replicate from single origins, whilst most archaea and all eukaryotes replicate using multiple origins. Initiation mechanisms that rely on homologous recombination operate in some viruses. Here we show that such mechanisms also operate in archaea. We have used deep sequencing to study replication in Haloferax volcanii. Four chromosomal origins of differing activity were identified. Deletion of individual origins resulted in perturbed replication dynamics and reduced growth. However, a strain lacking all origins has no apparent defects and grows significantly faster than wild-type. Origin-less cells initiate replication at dispersed sites rather than at discrete origins and have an absolute requirement for the recombinase RadA, unlike strains lacking individual origins. Our results demonstrate that homologous recombination alone can efficiently initiate the replication of an entire cellular genome. This raises the question of what purpose replication origins serve and why they have evolved. Measurement of replication dynamics (marker frequency analysis; MFA) for Haloferax volcanii strains, including wild-type, the laboratory strain, individual and combinations of replication origin deletions.
ORGANISM(S): Haloferax volcanii
SUBMITTER: Conrad Nieduszynski
PROVIDER: E-GEOD-41961 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA