Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes
Ontology highlight
ABSTRACT: The master transcription factors Oct4, Sox2 and Nanog bind enhancer elements and recruit the Mediator co-activator to activate much of the gene expression program of embryonic stem cells (ESCs). We report here that these ESC master transcription factors and Mediator form M-bM-^@M-^\super-enhancersM-bM-^@M-^] at most genes that are known to control the pluripotent state, including those encoding the master transcription factors themselves. These super-enhancers consist of extraordinarily large genomic domains occupied by exceptional amounts of Oct4 and Mediator. Super-enhancers stimulate considerably higher transcription than typical enhancers in reporter vectors. ESC differentiation causes preferential loss of expression of super-enhancer -associated genes. Super-enhancers are also found at key cell identity genes in differentiated cells. These results implicate super-enhancers in the control of mammalian cell identity and differentiation and suggest that these elements might generally be used to identify genes that control cell-type specific gene expression programs in many mammalian cells. ChIP-Seq and RNA-seq of Med1 in ZHBTc4 ES during treatment with doxycycline. ChIP-Seq data of Med1 in 38B9 pro-B cells.
ORGANISM(S): Mus musculus
SUBMITTER: Richard Young
PROVIDER: E-GEOD-42474 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA