Project description:Progesterone (P) acting through its cognate nuclear receptors (PRs) plays an essential role in driving pregnancy-associated branching morphogenesis of the mammary gland. However, the fundamental mechanisms, including global cistromic and acute genomic transcriptional responses that are required to elicit active branching morphogenesis in response to P, have not been elucidated. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to identify P-regulated genes that directly recruit PRs in the mouse mammary gland after acute P treatment. Two replicate PR ChIP samples and two replicate input DNA control samples from mouse mammary glands after mice are treated subcutaneously with 17?-Estradiol for 24 hours and then 17?-Estradiol plus Progesterone for 6 hours.
Project description:Progesterone (P) acting through its cognate nuclear receptors (PRs) plays an essential role in driving pregnancy-associated branching morphogenesis of the mammary gland. However, the fundamental mechanisms, including global cistromic and acute genomic transcriptional responses that are required to elicit active branching morphogenesis in response to P, have not been elucidated. We used microarray analysis to identify global gene expression signatures that are acutely regulated by PRs in the mouse mammary gland after acute P treatment. Mammary gland gene expression data from 10-week-old ovariectomized wildtype and progesterone receptor null mice treated subcutaneously with 17β-Estradiol for 24 hours and then 17β-Estradiol plus Progesterone for 8 or 24 hours. Three replicate pools were tested with three mice per pool.
Project description:Transcriptional profiling of different mouse mammary cellular compartments (basal, luminal and stromal) under define hormone treatments: estrogen, progesterone, estrogen plus progesterone and the vehicle control. Goal was to determine the effect of ovarian hormones on mammary cellular compartment gene expression. Four-condition experiment within each cellular compartment. vehicle vs. estrogen, progesterone and estrogen plus progesterone. Biological replicates: 3 vehicle control, 4 estrogen treatment, 3 progesterone treatment, 4 estrogen plus progesterone treatment in each epithelial compartment (luminal, basal). 3 vehicle control, 3 estrogen, 3 progesterone, 3 estrogen plus progesterone in the stromal compartment.
Project description:In this project we examined in-vitro effect of female sex hormones, estradiol and progesterone at average physiological concentration level on Chlamydia trachomatis gene expression level. Regulation of chlamydial gene expression by the female sex hormones oestradiol and progesterone was examined. A total of 16 chlamydial arrays were analysed with the 4 culture conditions (no hormone, E, P, E+P) x four replicates. Bacterial samples were grown in non-hormone treated culture were used as control
Project description:Decidualization is critical for the embryonic implantation and successful pregnancy. ATRA can suppress in-vitro decidualization of human endometrial stromal cells (hESCs) induced by MPA and estrogen treatment. However, the mechanism by which RA suppressed estrogen and progesterone induced decidualization of mESCs is not clear. We used microarrays to investigate the mechanism by which all-trans RA (ATRA) regulates the decidualization of endometrial stroma cells (mESCs). mESCs were isolated at day 4 of pseudopregnancy and cultured with administration of E2 and P4 in the presence or absence of ATRA for 72h.
Project description:DNA microarrays were used to investigate global gene expression patterns in cultured human umbilical artery endothelial cells (HUAECs) exposed to 1 nmol/L estradiol and/or 100 µg/ml oxidized low density lipoprotein (oxLDL) for 24 hours compared to control cells. HUAECs from 15 separate cultures were exposed to control (0.1% ethanol), 1nmol/L estradiol, 100 µg/ml oxLDL, or 1nmol/L estradiol + 100 µg/ml oxLDL treatments for 24 h. Total cellular RNA was extracted. Equal amounts of RNA extracted from 3 control cells or 3 estradiol-treated cells obtained from three different cultures were pooled, achieving five biological replicates of the control, five replicates that were treated with estradiol, five replicates that were treated with oxLDL and five replicates that were treated with estradiol+oxLDL . Therefore, a total number of 20 microarrays were developed.
Project description:To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq, to identify estrogen receptor 1 (ER) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ER binding sites and >50 gene expression changes, representing a subset of E2‑induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ER binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ER binding site, but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ER on a genome-wide scale, although with lower potency resulting in less ER binding sites and less gene expression changes compared to the endogenous estrogen, E2. RNA-seq of human cancer cell lines treated with estradiol, bisphenol A, genistein or DMSO (control)
Project description:Endocervical mucus changes play a key role in regulating fertility throughout the menstrual cycle and in response to hormonal contraceptives. Non-human primates (NHP) provide the most translational animal model for reproductive tract studies, as they have hormonally-regulated menstrual cycles and mucus changes, similar to women. We used TMT labelling and LC-LC/MS to compare the proteins found in the mucus of the rhesus macaque to the mucus of the human endocervix. We found 3,048 total proteins present in both rhesus mucus and human mucus, and of these, 57% showed a similar expression pattern. An even higher similarity occurred in the top 500 most prevalent proteins, with overlap in 341 (68%) proteins. Mucin MUC5B was the most highly expressed mucin protein (top 10 expressed proteins in both) but other key proteins related to mucus structure were present in both samples. We find that the mucus proteome of the endocervical mucus is highly conserved in NHP and women. This supports use of the NHP model system for studies of the endocervix and trials of novel fertility treatments targeting the cervix.