Arsenic trioxide inhibits the metastasis of osteosarcoma through suppressing transcriptional activity of GLI2 and downregulation of ribosomal protein S3
Ontology highlight
ABSTRACT: Aberrations in the Hedgehog (Hh) pathway are known to related to several malignancies. However, little is known about the function of GLI2, a transcription factor in the Hh pathway, in osteosarcoma. Osteosarcoma is the most frequent primary bone sarcoma in children and adolescents. Despite survival rates of osteosarcoma patients have increased, the prognosis of patients with metastasis remains poor. Therefore, the development of novel therapeutic strategies for osteosarcoma patients is development of novel therapeutic strategies for osteosarcoma patients is urgently needed. Aberrations in the Hedgehog (Hh) pathway are known to related to several malignancies. However, little is known about the function of GLI2, a transcription factor in the Hh pathway, in osteosarcoma. Our findings revealed that GLI2 was overexpressed in osteosarcoma tissues. Additionally, GLI2 is involved in the metastasis of osteosarcoma cells through the regulation of ribosomal protein S3 expression. Furthermore, we showed that arsenic trioxide (ATO) suppressed the invasion and lung metastasis of osteosarcoma cells by the inhibition of GLI transcription. Consequently, these finding reveal a novel function of GLI2 in the metastasis of osteosarcoma and that ATO may be a new therapeutic agentay be a new therapeutic agent. We revealed that a novel function of GLI2 in the metastasis of osteosarcoma and that ATO may be a new therapeutic agent for preventing osteosarcoma metastasis. Negative siRNA(U-2OS) and GLI2 siRNA(U-2OS)
ORGANISM(S): Homo sapiens
SUBMITTER: Hiroko Nagao
PROVIDER: E-GEOD-42903 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA