Chem-Seq of chemical derivatives in MM1S cells
Ontology highlight
ABSTRACT: An ability to map the global interactions of a chemical entity with chromatin genome-wide could provide new insights into the mechanisms by which a small molecule perturbs cellular functions. we developed a method that uses chemical derivatives and massively parallel DNA sequencing (Chem-Seq) to identify the sites bound by small chemical molecules throughout the human genome. We developed in vivo and in vitro Chem-Seq protocols with a biotinylated derivative of small molecules. In the in vivo protocol, Cells were first treated with biotinylated ligand and cross-linked with formaldehyde at the same time. Cells were then lysed, sonicated to shear the DNA, and streptavidin beads were used to isolate biotinylated ligand and associated chromatin fragments. We then used massively parallel sequencing to identify the enriched DNA fragments, and mapped these sequences to the genome. In in vitrol protocol, MM1.S cells were fixed and the derived sonicated lysate incubated with biotinylated drug to enrich for bound chromatin regions in vitro. We then used massively parallel sequencing to identify the enriched DNA fragments, and mapped these sequences to the genome.
ORGANISM(S): Homo sapiens
SUBMITTER: Richard Young
PROVIDER: E-GEOD-44098 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA