Genome-wide transcriptional response of the filamentous fungus Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger
Ontology highlight
ABSTRACT: The induction of genes in response to exposure of T. reesei to wheat straw was explored using genome-wide RNA-seq and compared to published RNA-seq data and model of how A. niger senses and responds to the lignocellulose. After 24 h of exposure to straw, transcript levels of known and predicted lignocellulose-degrading enzymes increased to around 8% of total cellular mRNA in T. reesei, which was much less when compared to A. niger. The bulk of enzymes used to deconstruct wheat straw is similar in both fungi. Other, non-plant cell wall-degrading enzymes which may aid in lignocellulose degradation were also uncovered in T. reesei and similar to those described in A. niger. Antisense transcripts were also shown to be present in T. reesei and their expession can be regulated by the respective growth condition. Triplicate samples of T. reesei cultivated in each of the three following conditions were taken: 1) After 48 h growth in glucose-based minimal media; 2) After transfer of mycelia from glucose-based media into media containing wheat straw as a sole carbon source and 3) 5 h after addition of glucose to straw cultures.
ORGANISM(S): Trichoderma reesei
SUBMITTER: Laure Ries
PROVIDER: E-GEOD-44648 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA