Project description:Cancer cells maintain a sensitive balance between growth-promoting oncogenes and apoptosis inhibitors. We show that WT RUNX1 is required for survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 AML cell lines. The malignant AML phenotype is sustained by a delicate AML1-ETO/RUNX1 balance that involves competition for common DNA binding sites regulating a subset of AML1-ETO/RUNX1 targets. Genomewide sequencing data is included herein: Transcription factors RUNX1 c-terminus and n-terminus which is shared with AML1-ETO were profiled independently), AML1-ETO and AP4 were profiled using ChIP-Seq in Kasumi-1 cells, as well as control ChIP-Seq experiments of non immune serum. Two replicates were performed for each transcription factor profiling and control experiment.
Project description:Cancer cells maintain a sensitive balance between growth-promoting oncogenes and apoptosis inhibitors. We show that WT RUNX1 is required for survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 AML cell lines. The malignant AML phenotype is sustained by a delicate AML1-ETO/RUNX1 balance that involves competition for common DNA binding sites regulating a subset of AML1-ETO/RUNX1 targets. Genome expression was profiled after performing knockdown of RUNX1 and AML1-ETO in Kasumi-1 cells using specific siRNA-oligo nucleotides, and analyzed using Affymetrix Gene 1.0 ST arrays.
Project description:RUNX1 transcription factor (TF) is a key regulator of megakaryocytic development and when mutated is associated with familial platelet disorder and predisposition to acute myeloid leukemia (FPD-AML). We used mice lacking Runx1 specifically in megakaryocytes (MKs) to characterize the Runx1-mediated transcriptional program during advanced stages of MK differentiation. Gene expression and chromatin-immunoprecipitation-sequencing (ChIP-seq) of Runx1 and p300 identified functional Runx1-bound MK enhancers. Runx1/p300 co-bound regions showed significant enrichment in genes important for MK and platelet homeostasis. Runx1-bound regions were highly enriched in RUNX and ETS motifs and to a lesser extent in GATA motif. The data provides the first example of genome-wide Runx1/p300 occupancy in maturating FL-MK, unravels the Runx1-regulated program controlling MK maturation in vivo and identifies its bona fide regulated genes. It advances our understanding of the molecular events that upon mutations in RUNX1 lead to the predisposition to familial platelet disorders and FPD-AML. Examination of RUNX1 and P300 binding in WT mouse megakaryoctye cells using ChIP-Seq. The supplementary 'GSE45372_PeakList.txt' file includes a list of regions identified as binding for P300 or RUNX1 or both.
Project description:Regulation of Megakaryocytic differentiation in Cell Line Models by Dynamic Combinatorial Interactions of RUNX1 with Its Cooperating Partners Examination of RUNX1 binding in K562 cells, before and following TPA induction and CMK cells. Examination of GATA1 and FOS binding and H3K4me1 and H3K27me3 modification levels following TPA induction in K562 cells.
Project description:This SuperSeries is composed of the following subset Series: GSE24777: Regulation of Megakaryocytic differentiation in Cell Line Models by Dynamic Combinatorial Interactions of RUNX1 with Its Cooperating Partners GSE24778: Expresssion data in K562 cells, before and after TPA induction and including a RUNX1 knockout construct or a control structure Refer to individual Series
Project description:The t(8;21) translocation fuses the DNA binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape we measured genome-wide RUNX1- and RUNX1/ETO bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide re-distribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML. Total RNA were obtained using 8 samples over four time courses (mismatch control and knock-down)
Project description:RUNX1-ETO knockdown was performed in Kasumi-1 cells and Pro-seq analyses were performed. Control cells (Kasumi-1 shControl) were also analysed and all samples were analysed in duplicates.
Project description:The t(8;21) Acute Myeloid Leukaemia (AML) Kasumi-1cell line with N822K KIT mutation, is a model system for leukemogenesis. As AML initiating cells reside in the CD34+CD38- fraction, we addressed the refined cytogenomic characterization and miRNA expression of Kasumi-1 cell line and its FACS-sorted subpopulations focussing on this compartment. By conventional cytogenetics, Spectral Karyotyping and array-CGH the cytogenomic profile of Kasumi-1 cells evidenced only subtle regions differentially represented in CD34+CD38- cells. Expression profiling by a miRNA platform showed a set of miRNA differentially expressed in paired subpopulations and the signature of miR-584 and miR-182 upregulation in the CD34+CD38- fraction.
Project description:In this study, we have investigated the effect of LMP1 on gene expression in normal human GC B cells using a non-viral vector based system Experiment Overall Design: Gene expression was compared between LMP1-transfected and control vector-transfected GC B cells from three patients. RNA from the FACS-sorted transfected GC B cells was amplified. 10ug of fragmented cRNA was hybridized to HG-U133 Plus 2.0 microarrays. Differentially expressed genes were identified using significance analysis of microarrays (SAM) with a 1.5 fold change threshold and the q-value threshold set to 5%.