Project description:Expression response after induction of putative phrenic neuronal determinants in ES cell-derived motor neurons was compared to a pre-determined list of genes over-expressed in FACS-sorted primary. Transcription factor Pou3f1 was identified as a major determinant of phrenic identity. Expression in induced cell lines were compared to YFP controls, and over-representation of phrenic genes was computed for the list of differentially expressed genes in each indiced cell lines.
Project description:We performed RNA-seq experiments on two samples (cortical neurons and spinal motor neurons) from normal induced pluripotent stem cells (iPSCs), and another two samples (cortical neurons and spinal motor neurons) derived from SPG3A (an early onset form of hereditary spastic paraplegia) iPSCs. This initial experiment is to test the system and set up a baseline for future studies. Cortical projection neurons and spinal motor neurons were differentiated from same batch of iPSCs in parallel to minimize variations. The differentiation of cortical neurons and spinal motor neurons are based on protocols well-established in our group.
Project description:Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s Disease, is a slowly progressive adult-onset neuromuscular disease which results from a polyglutamine (polyQ) encoding CAG repeat expansion within the androgen receptor gene (AR). Despite the ubiquitous expression of the androgen receptor, it is unclear why motor neurons selectively degenerate and there are no effective treatments or disease modifying therapies for this debilitating disease. In order to identify potential therapeutic targets, we set out to establish the genes and molecular pathways involved in early motor neuron dysfunction in SBMA. We therefore undertook global transcriptomic profiling of cultured primary embryonic motor neurons from the spinal cord of AR100 mice, which model SBMA.. Four biological replicate samples were used for genome wide analysis using Affymetrix 430 v2.0 mouse arrays. Data was normalised using therobust multichip average (RMA) algorithm.
Project description:Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPSC) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms. Microarray technology was used to assess the global gene expression profile as well as splicing events of iPS-derived motorneurons from SMA patient, unaffected father and TGC-treated cells. The microarray data derived from three different groups: SMA patient, healty father and treated SMA patient's cells. Each population consists of three RNA profiling cell samples.
Project description:Recent genetic studies of ALS patients have identified several forms of ALS that are associated with mutations in RNA binding proteins. In animals or cultured cells, such defects broadly affect RNA metabolism. This raises the question of whether all forms of ALS have general effects on RNA metabolism. We tested this hypothesis in a mouse model of ALS that is transgenic for a human disease-causing mutation in the enzyme superoxide dismutase 1 (SOD1). We analyzed RNA from laser-captured spinal cord motor neuron cell bodies of the mutant SOD1 strain, comparing the RNA profile with that from a corresponding wild-type SOD1 transgenic strain. We prepared the samples from animals that were presymptomatic, but which manifested abnormalities at the cellular level that are seen in ALS, including aggregation of the mutant protein in motor neuron cell bodies and defective morphology of neuromuscular junctions, the connections between neuron and muscle. We observed only minor changes in the level and splicing of RNA in the SOD1 mutant animals as compared with wild-type, suggesting that mutant SOD1 produces the toxic effects of ALS by a mechanism that does not involve global RNA disturbance. RNA-Seq of laser microdissection of motor neuron bodies from two biological replicates each of SOD1 YFP (wildtype 592) and SOD1 G85R YFP (737) transgenic mice.
Project description:ALS is a uniformly fatal neurodegenerative disease in which motor neurons in the spinal cord and brain stem are selectively lost. Individual motor - groups of motor neurons innervating single muscles - show widely varying degrees of disease resistance: in the final stages of ALS, nearly all voluntary movement is lost but eye movement and eliminative and sexual functions remain relatively unimpaired. These functions are controlled by motor neurons of the oculomotor (III), trochlear (IV) and abducens (VI) nuclei in the midbrain and brainstem, and by Onuf's nucleus in the lumbosacral spinal cord, respectively. Correspondingly, in ALS autopsies the oculomotor and Onuf's nuclei are almost completely preserved. We used microarray profiling of isolated wildtype mouse motor neurons to identify genes whose expression was characteristic of both oculomotor and Onuf's nuclei but not of vulnerable lumbar spinal neurons, or vice versa. Three wild-type C57BL/6J P7 male animals were perfused with 30% sucrose, lumbosacral spinal cord and midbrain regions were rapidly recovered, embedded in OCT compound, and frozen in liquid nitrogen. 12 um-thick cryosections were mounted on RNAse-free, PEN-foil covered glass slides (Zeiss), fixed for 2 min in 100% EtOH, rinsed in 50% EtOH, stained with 1% cresyl violet for 2 min, rinsed with 50% EtOH, dehydrated in graded solutions of ethanol and air dried prior to LCM using PALM Microbeam system (Zeiss). From each animal, ~200 DL, L5, and oculomotor motor neurons were collected directly in lysis buffer. RNA was purified using Absolutely RNA, NanoPrep kit (Stratagene, La Jolla, CA). RNA integrity was assessed on the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). At least 1.5 ng of purified RNA was the starting material used in the WT-Ovation Pico RNA Amplification System (Nugen, San Carlos,CA) with the FL-Ovation cDNA Biotin Module V2 (Nugen) to generate labeled probe. 10 ug of biotinylated cRNA from three independent samples for each motor neuron group isolated by LCM was hybridized to on Affymetrix (Santa Clara, CA) Mouse Genome 430 2.0 Arrays. Gene ontology and pathway analysis was performed using DAVID Bioinformatics Resources 6.7 (National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD).
Project description:Spinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearance of plateau potentials in motor neurons and the development of spasticity after spinalization. To understand the molecular mechanism behind this phenomena we examined the transcriptional response of the motor neurons after spinal cord injury as it progress over time. We used a rat tail injury model where a complete transection of the caudal (S2) rat spinal cord leads to an immediate flaccid paralysis of the tail and a subsequent appearance of spasticity 2-3 weeks post injury that develops into strong spasticity after 2 months. Gene expression changes were studied in motor neurones 0, 2, 7, 21 and 60 days after complete spinal transection. Tail MNs were retrogradely labelled with Fluoro-Gold injected into the muscle and intra peritoneally. 5-7 days after tracer injections the spinal cord was dissected out, snap-frozen in liquid nitrogen, sliced in 10 um thick slices and fluorescent motor neurons were laser dissected into a collector tube to a total of ca. 50-200 cells pr sample. RNA was then extracted, two round amplified and hybridized to Affymetrix rat 230 2.0 arays. 31 samples were hybridized onto chips, 4 Spi-0 (Control), 6 Spi-2, 5 Spi-7, 8 Spi-21 and 8 Spi-60.
Project description:Expression response after induction of putative phrenic neuronal determinants in ES cells was compared to a pre-determined list of genes over-expressed in FACS-sorted phrenic cells. Transcription factor Pou3f1 was identified as a major determinant of phrenic identity. Cells type individually compared to the overall expression to identify differentially expressed genes patterns
Project description:Spinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalization. To understand the molecular mechanism behind this phenomenon we examined the transcriptional response of the motor neurons after spinal cord injury. We used a rat tail injury model where a complete transection of the caudal (S2) rat spinal cord leads to an immidate flaccid paralysis of the tail and a subsequent appearence of spasticity 2-3 weeks post injury that develops into strong spasticity after 2 months. Gene expression changes were studied in motor neurons 21 and 60 days after complete spinal transection where the tail exhibits clear signs of spasticity. Tail MNs were retorgradely labelled with flourogold injected into the muscle and intra peritoneally. 5-7 days after tracer injections the spinal cord was dissected out, snab frozen in liquid nitrogen, sliced in 10 um thick slices and fluorescent motor neurons were laser dissected into a collector tube to a total of ca. 50-200 cells pr sample. RNA was then extracted, two round amplified and hybridized to Affymetrix rat 230 2.0 arays. 27 samples were hybridized onto chips, 8 Spi-21, 8 Spi-60, 6 ShamC-21 and 5 ShamC-60.