Gene expression of A53T and corrected IPSC driven to DA neurons and exposed to paraquat and maneb
Ontology highlight
ABSTRACT: Parkinson disease (PD) is characterized by extensive loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). A strong association has been reported between PD and exposure to mitochondrial toxins such as the environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived, stem cell model of PD that allows comparison of -synuclein ( -syn) mutant cells and isogeneic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations specific to A53T -syn mutant A9-DA neurons (hNs). We report a novel molecular pathway whereby basal as well as toxin-induced oxidative and nitrosative stress inhibits the MEF2C-PGC1 transcription network in A53T hNs compared to corrected controls, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small molecule high-throughput screening, we identify the MEF2C-PGC1 pathway as a new drug target for therapeutic benefit in PD. In the current study, isogenic hiPSCs differing exclusively at a single amino acid (A53T) were exposed to either 2.8uM paraquat in combination with 1uM maneb for 24h or PBS vehicle control. Gene expression profile was analysed to assess the effect of both the genotype and exposure regiment on gene expression.
ORGANISM(S): Homo sapiens
SUBMITTER: Scott Ryan
PROVIDER: E-GEOD-46798 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA