Xist exploits three-dimensional chromosome architecture to spread across the X-chromosome
Ontology highlight
ABSTRACT: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. Here we investigate the localization mechanisms of Xist during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X-chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X-chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X-chromosome. Xist initially accumulates on the periphery of actively transcribed regions and requires its silencing domain to spread across active regions. This suggests a model where Xist coats the entire X-chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations. We examined the genomic localization of the Xist lncRNA using RNA Antisense Purification (RAP) in multiple cell contexts: 1) differentiated female cells (MLFs); 2) a time-course of Xist localization in male embryonic stem (ES) cells where the endogenous Xist promoter is replaced by a tet-inducible one (pSM33); 3) a time-course of Xist localization in differentiating female ES cells (F1 2-1); and 4) wild-type (delXF6) and A-repeat deletion (delSXC9) Xist transgenes incorporated into the Hprt locus under the control of a tet-inducible promoter.
ORGANISM(S): Mus musculus
SUBMITTER: Jesse Engreitz
PROVIDER: E-GEOD-46918 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA