BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure [Mouse Heart Expression]
Ontology highlight
ABSTRACT: Heart failure (HF) is driven via interplay between master regulatory transcription factors and dynamic alterations in chromatin structure. While pathologic gene transactivation in this context is known to be associated with recruitment of histone acetyl-transferases and local chromatin hyperacetylation, the role of epigenetic reader proteins in cardiac biology is unknown. We therefore undertook a first study of acetyl-lysine reader proteins, or bromodomains, in HF. Using a chemical genetic approach, we establish a central role for BET-family bromodomain proteins in gene control during HF pathogenesis. BET inhibition potently suppresses cardiomyocyte hypertrophy in vitro and pathologic cardiac remodeling in vivo. Integrative transcriptional and epigenomic analyses reveal that BET proteins function mechanistically as pause-release factors critical to activation of canonical master regulators and effectors that are central to HF pathogenesis and relevant to the pathobiology of failing human hearts. This study implicates epigenetic readers in cardiac biology and identifies BET co-activator proteins as therapeutic targets in HF. Gene expression analysis of mouse hearts subjected to either trans aortic constriction (TAC) or sham surgeries followed by treamtent with dmso vehicle or the BET bromodomain inhibitor JQ1
ORGANISM(S): Mus musculus
SUBMITTER: James Bradner
PROVIDER: E-GEOD-48110 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA