Pruning of the adipocyte cistrome by hematopoietic master regulator PU.1 (ChIP-seq)
Ontology highlight
ABSTRACT: "Master" transcription factors are the gatekeepers of lineage identity. As such, they have been a major focus of efforts to manipulate cell fate for therapeutic purposes. The ETS transcription factor PU.1 has a potent ability to confer macrophage phenotypes on cells already committed to a different lineage, but how it overcomes the presence of other master regulators is not known. The nuclear receptor PPARM-NM-3 is the master regulator of the adipose lineage, and its genomic binding pattern is well characterized in adipocytes. Here, we show that when expressed at macrophage levels in mature adipocytes, PU.1 bound a large fraction of its macrophage sites, where it induced chromatin opening and the expression of macrophage target genes. Strikingly, PU.1 markedly reduced the genomic binding of PPARM-NM-3 without changing its abundance. PU.1 expression repressed genes with nearby adipocyte-specific PPARM-NM-3 binding sites, while a common macrophage-adipocyte gene expression program was retained. Together, these data reveal unexpected lability within the adipocyte PPARM-NM-3 cistrome and show that even in terminally differentiated cells, PU.1 can remodel the cistrome of another master regulator. ChIP-seq was performed on 3T3-L1 adipocytes from two treatment groups: (1) adipocytes transduced with a control adenovirus expressing beta-galactosidase (LACZ-Ads) and (2) adipocytes transduced with an adenovirus expressing full-length murine PU.1 cDNA (PU.1-Ads). Nuclear lysates from each group were used for PPARg ChIP. For PU.1-Ads, PU.1 ChIP was also performed. To generate chromatin for ChIP-seq, DNA from three immunoprecipitations per condition was pooled. This process was repreated from a second set of L1 adipocytes to generate two biological replicates for sequencing. Genomic input DNA was sequenced from the first biological replicate only.
ORGANISM(S): Mus musculus
SUBMITTER: Joanna DiSpirito
PROVIDER: E-GEOD-48343 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA