ABSTRACT: Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is effectively controlled by Rps genes in soybean. Rps genes are race-specific, yet the mechanism of resistance, as well as susceptibility, remains largely unclear. Taking advantage of RNA-seq technology, we sequenced the transcriptomes of 10 near isogenic lines (NIL), each with a unique Rps gene, and the recurrent susceptible parent ‘Williams’. A total of 4330 differentially expressed genes (DEGs) were identified in ‘Williams’ while 2075 to 5499 DEGs were identified in each NIL. Comparisons between the NILs and ‘Williams’ allowed classification of two major groups of DEGs of interest: incompatible reaction associated genes (IRAGs) and compatible reaction associated genes (CRAGs). Hierarchical cluster analysis divided NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6). Heatmap analysis, along with GO analysis suggested that the diversity of clusters for NILs were likely due to variation of the number of DEGs and the intensity of gene expression, rather than functional differentiation. Further analysis suggested that transcription factors might play pivotal role in determination of the cluster pattern, and that WRKY family were strongly associated with incompatible reactions. Analysis of IRAGs and CRAGs with putative functions suggested that the regulation of many phytohormone signaling pathways were associated with incompatible or compatible interactions with potential crosstalk between each other. As such, our study provides an in depth view of both incompatible and compatible interactions between soybean and P. sojae, which provides further insight into the mechanisms involved in host-pathogen interactions. 22 samples were sequenced, 11 inoculated with P. sojae, the other 11 were mock-inoculated