Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Gene expression data from mouse HDAC4 KO pups, postnatal day 3


ABSTRACT: Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue-specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation, we employed the unbiased AcetylScan proteomic screen. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only CamK4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain. mRNA expression analysis was performed by microarray in 3-day-old HDAC4 KO pups and WT littermates. Ten samples were analysed for each genotype. Microarray quality control was performed using the software package provided on RACE (http://race.unil.ch).

ORGANISM(S): Mus musculus

SUBMITTER: Tamara Seredenin 

PROVIDER: E-GEOD-49383 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications


Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs  ...[more]

Similar Datasets

2014-07-30 | GSE49383 | GEO
2011-09-08 | E-GEOD-20979 | biostudies-arrayexpress
2011-09-09 | GSE20979 | GEO
2019-11-27 | GSE136627 | GEO
2023-02-03 | GSE144830 | GEO
2018-03-07 | GSE70738 | GEO
2018-03-07 | GSE70736 | GEO
2022-01-25 | GSE180804 | GEO
2019-11-13 | GSE132569 | GEO
2019-11-12 | GSE132622 | GEO