Expression data from Saccharomyces cerevisiae strains carrying the rna14-1 or the rna15-1 allele
Ontology highlight
ABSTRACT: In the yeast Saccharomyces cerevisiae, cleavage factor I (CFI) and cleavage and polyadenylation factor (CPF) build the core of the transcription termination machinery. CFI comprises the Rna14, Rna15, Pcf11, and Clp1 proteins, as well as the associated Hrp5 RNA-binding protein. We found that CFI participates in the DNA damage response and that rna14-1 shows synthetic growth defects with mutants of different repair pathways, including homologous recombination, non-homologous end joining, post replicative repair, mismatch repair, and nucleotide excision repair, implicating that impaired RNAPII termination and 3â-end processing decreases the cellular tolerance for DNA damage. Beyond replication progression defects, we found that bypass of the G1/S checkpoint in rna14-1 cells leads to synthetic sickness, accumulation of phosphorylated H2A, as well as increase in Rad52-foci and in recombination. Our data provide evidence that CFI dysfunction impairs RNAPII turnover, leading to replication hindrance and lower tolerance to exogenous DNA damage. These findings underscore the importance of coordination between transcription termination, DNA repair and replication in the maintenance of genomic stability. S. cerevisiae strains were grown in YPAD liquid culture at 30°C, total RNA was isolated and hybridized on Affymetrix microarrays.
ORGANISM(S): Saccharomyces cerevisiae
SUBMITTER: Andrés Aguilera
PROVIDER: E-GEOD-50947 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA