Quercetin decreases high-fat diet induced bodyweight gain and accumulation of hepatic and circulating lipids in mice.
Ontology highlight
ABSTRACT: Dietary flavonoids are supposed to be protective against cardiovascular diseases (CVD). Elevated circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. We investigated the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a high-fat diet without or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Body weight gain was 29% lower in quercetin-fed mice (p<0.01), while the energy intake was not significantly different. Quercetin supplementation reduced hepatic lipid accumulation with 71% (p<0.05). 1H nuclear magnetic resonance serum lipid profiling revealed that the supplementation lowered serum lipids (p<0.0001). Global gene expression profiling of liver showed that key target genes of the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were regulated, in particular Cytochrome P450 2b (Cyp2b) genes. Quercetin can decrease high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels, which might be explained by the regulation of Cytochrome P450 genes under transcriptional control of CAR, an effect which is likely dependent on dietary background. Liver samples were obtained from 24 C57BL/6J male adult mice. All mice started with a three week adaptation phase, in which they were fed a normal-fat diet. During the intervention of 12 weeks, the mice received a high-fat diet without (HF) or with supplementation of 0.33% (w/w) quercetin (HF-Q). Based on visual inspection, three arrays lacked homogenous hybridization and were therefore excluded.
ORGANISM(S): Mus musculus
SUBMITTER: Evert van Schothorst
PROVIDER: E-GEOD-51343 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA