Project description:Tomato, a Strategy I model plant for Fe deficiency, is an important economical crop. The transcriptional responses induced by Fe deficiency in tomato roots were previously described (Zamboni et al., 2012). The changes in trascriptome caused by the supply of Fe to plants starved fro 1 week were described in relation to the different nature of chelating agents (Fe-WEHS, Fe-CITRATE and Fe-PS). Transcriptional profile obtained by roots (27-d) of 21-d-old tomato plants starved of iron (0 μM Fe-EDTA) for 1 week and supplied for 1 h with 1 μM of Fe as Fe-WEHS (supply_Fe_WEHS), Fe citrate (supply_Fe_CITRATE) and Fe-PS (supply_Fe_PS). Tomato plants were hydroponically grown in all three case of Fe supply. Three different biological replicates were used for each sample repeating the experiment three times. All samples were obtained pooling roots of six plants (27-d-old).
Project description:Essential metals such as iron are required for healthy plant growth. Fe is an important cofactor and catalytic element in many biological processes. Fe and other metals can also be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalisation. The NAS genes are supposed to play an important role in Fe homeostasis. They are coding for enzymes called nicotianaminesynthase (NAS), which synthesize nicotianamine (NA) by a one-step condensation reaction of three molecules S-adenosyl-methionine. NA acts as a chelator for Fe, Cu, Ni and Zn and might be involved in the transport and allocation of Fe throughout the plant. We generated quadruple T-DNA insertion mutant nas plants to investigate NA function as described in Klatte et al., 2009, Plant Physiol. The nas4x-1 plants show an interveinal leaf chlorosis when turning from vegetative to reproductive stage, which intensifies when growing under Fe deficiency conditions. nas4x-1 plants have strongly reduced NA contents and show an elevated Fe deficiency response in roots. By performing microarray experiments we want to reveal global changes on transcriptional level in roots and leaves of nas4x-1 mutant compared to wild type plants grown under Fe supply and Fe deficiency conditions, respectively. The loss of NAS genes has a strong impact on the regulation of other metal homeostasis genes and allows to draw conclusions about nicotianamine function in metal homeostasis of A.thaliana. For this study, four-week old nas4x-1 mutant and wild type plants were exposed for 7 days to plant medium with and without Fe supply. These conditions have been established previously and have resulted in a reproducibly strong interveinal leaf chlorosis of nas4x-1 plants compared to wild type, especially upon Fe deficiency conditions. The experiment was repeated three times in consecutive weeks to obtain three independent biological repetitions. Rosette leaves and roots of five week-old plants were harvested, RNA was isolated and microarray hybridization was performed. 24 Total samples were analyzed. We generated the following pairwise comparisons: WT + Fe vs. – Fe, nas4x-1 + Fe vs. – Fe, + Fe WT vs. + Fe nas4x-1, - Fe WT vs. - Fe nas4x-1, roots and leaves
Project description:Transcriptional profiling of R. sphaeroides Δirr under iron limitation (-Fe) compared to control R. sphaeroides Δirr under normal growth conditions (+Fe). Two strain experiment under normal iron (+Fe) and iron limitation (-Fe) conditions. 6 Biological replicates, independently grown and harvested at OD660=0,4; 1-3 pooled in replicate 1, 4-6 pooled in replicate 2
Project description:Fe deficiency stimulates a coordinated response involving reduction, transport and redistribution of Fe in the roots. The expression of genes regulated by Fe deficiency in the two contrasting Arabidopsis thaliana ecotypes, Tsu-1 and Kas-1, shows that different ecotypes can respond in diverse ways, with different Fe regulated overrepresented categories. We use microarrays to analyze the Fe deficiency responses of contrasting Arabidopsis thaliana ecotypes (Tsu-1 and Kas-1). Arabidopsis thaliana roots from the Kas-1 and Tsu-1 ecotypes were exposed to complete or -Fe nutrient solutions and collected after 24 and 48 h for RNA extraction and hybridization on Affymetrix microarrays. Experiments were done using three biological replicates.
Project description:We used RNA-Seq to compare the transcriptomes of Fe-replete vs. Fe-deficient vs. Fe-limited Chlamydomonas wild-type cells. Our RNA-Seq data revealed 90 and 49 genes to be specifically expressed under hetero-phototrophic and phototrophic conditions, respectively. Around 30 genes represent putative Fe-deficiency targets, independent of the carbon source used. Many of these Fe-specific responses are conserved between Chlamydomonas and land plants. We identified several transporters (NRAMP4, a CCC1-like proteins and a ferroportin homologue) all of them most likely being involved in intracellular Fe redistribution. RNA-seq of Chlamydomonas Fe-deficient and limited cells indicated that about 40% of differentially expressed genes represent proteins of unknown functions. Whereas Fe-deficiency gave us insides into putative Fe-specific responses, Fe-limitation revealed responses related to increased oxidative stress. Quantitative proteomics on the soluble Chlamydomonas extracts indicated a fair correlation between changes we detected at mRNA levels compared to changes in protein levels in Fe-deficient and Fe-limited Chlamydomonas. We found that Fe-deficient and Fe-limited cells have increased ascorbate levels, a major antioxidant molecule in plants. Ascorbate levels appear to be elevated by de novo synthesis via the L-Galactose pathway and recycling by monodehydroascorbate reductase. Fe-limited cells showed increased transcript and protein levels of enzymatic antioxidant components of the ascorbate-glutathione scavenging system (MSD3, MDAR1 or GSH1). Fe-limited cells showed the increase of several proteases indicative of elevated proteolitic activity under these severe nutrient limitation conditions. Sampling of Chlamydomonas CC-1021 (2137) cells cultivated photoheterotrophically (TAP) or phototrophically (minimal) under Fe-replete (20mM), Fe-deficient (1 mM) and Fe-limited (0.25 mM) conditions.
Project description:Transcription profiling of citrus rootstock Poncirus trifoliata (L.) Raf. Keywords: Abiotic stress (Iron chlorosis) Total RNA from four replicates for each sample category (Poncirus trifoliata (L.) Raf watered for 60 days with 18 uM Fe-EDDHA or without Fe-EDDHA) were generated and compared.
Project description:au10-14_fer - response of ein3eil1 mutants to fe deficiency - Response of ein3eil1 mutants to Fe deficiency - Wild type seedlings and ethylene insensitive ein3eil1 seedlings were germinated and grown in the presence of 50 µM Fe or absence of Fe (0 µM) on Hoagland medium agar plates until the age of 6 days. Under these growth conditions symptoms of Fe deficiency develop in the 0 Fe plants. Ethylene is known to promote Fe acquisition responses. Whole seedlings were harvested for transcriptome analysis, in a total of three biological replicates. 12 dye-swap - gene knock out,treated vs untreated comparison
Project description:Plants maintain iron (Fe) homeostasis under varying environmental conditions by balancing processes such as Fe uptake, transport, and storage. In Arabidopsis, POPEYE (PYE), a basic helix-loop-helix (bHLH) transcription factor (TF), has been shown to play a crucial role in regulating this balance. In recent years, the mechanisms regulating Fe uptake have been well established but the upstream transcriptional regulators of Fe transport and storage are still poorly understood. In this study, we report that ELONGATED HYPOCOTYL5 (HY5), a basic leucine zipper (bZIP) TF which has recently been shown to play a crucial role in Fe homeostasis, interacts with PYE. Molecular, genetic and biochemical approaches revealed that PYE and HY5 have overlapping as well as some distinct roles in regulation of Fe deficiency response. We found that HY5 and PYE both act as a repressor of Fe transport genes such as YSL3, FRD3, NPF5.9, YSL2, NAS4, and OPT3. HY5 was found to directly bind on the promoter of these genes and regulate intercellular Fe transport. Further analysis revealed that HY5 and PYE directly interact at the same region on PYE and NAS4 promoter. Overall, this study revealed that HY5 regulates Fe homeostasis by physically interacting with PYE as well as independently.
Project description:Diatoms, which are responsible for up to 40% of the 45 to 50 billion metric tons of organic carbon production each year in the sea, are particularly sensitive to Fe stress. Here we describe the transcriptional response of the pennate diatom Phaeodactylum tricornutum to Fe limitation using a partial genome microarray based on EST and genome sequence data. Processes carried out by components rich in Fe, such as photosynthesis, mitochondrial electron transport and nitrate assimilation are down-regulated to cope with the reduced cellular iron quota. This retrenchment is compensated by nitrogen (N) and carbon (C) reallocation from protein and storage carbohydrate degradation, adaptations to chlorophyll biosynthesis and pigment metabolism, removal of excess electron s by mitochondrial alternative oxidase (AOX), augmented Fe-independent oxidative stress responses, and sensitized iron capture mechanisms. Keywords: Marine phytoplankton, pinnate diatom Wild-type Phaeodactylum tricornutum was grown under Fe replete (10,000 nM) and Fe limiting (5nM) conditions. Partial genome gene expression analysis of iron-inducible genes was conducted using a two-color competitive hybridization microarray.
Project description:Investigation of whole genome gene expression level changes in a Nitrosomonas europaea (ATCC 19718) wildtype and pFur::Kan mutant [kanamycin resistance cassette insertion in the promoter region of the fur gene (NE0616)] strains grown in Fe-replete and Fe-limited media. The Nitrosomonas europaea (ATCC 19718) wiltype cells grown in Fe-limited media were compared to cells grown in Fe-replete media to gain a better understanding of the metabolic changes occurring in response to iron stress. The Nitrosomonas europaea (ATCC 19718) pFur::Kan mutant strain grown in Fe-replete & Fe-limited media were compared to wildtype cells grown in Fe=replete & Fe-limited media to gain a better understanding of the role Fur (NE0616) plays in iron homeostasis control. A 4-plex 3 chip study using total RNA recovered from three separate wild-type cultures each of N. europaea grown in Fe-replete media and Fe-limited media and three seperate cultures each of N. europaea pFur::Kan mutant strain grown in Fe-replete and Fe-limited media. Each chip measures the expression level of 2368 genes from Nitrosomonas europaea (ATCC19718) with 4 X 72,000 60-mer 14 probe pairs per gene, with two-fold technical redundancy.