Function of chemokine (CXC motif) ligand 12 in periodontal ligament fibroblasts
Ontology highlight
ABSTRACT: The periodontal ligament (PDL) is one of the connective tissues located between the tooth and bone. It is characterized by rapid turnover. Periodontal ligament fibroblasts (PDLFs) play major roles in the rapid turnover of the PDL. Microarray analysis of human PDLFs (HPDLFs) and human dermal fibroblasts (HDFs) revealed markedly high expression of chemokine (CXC motif) ligand 12 (CXCL12) in the HPDLFs, which plays an important role in the migration of mesenchymal stem cells (MSCs). The function of CXCL12 in the periodontal ligament was investigated in HPDLFs. CXCL12 in HPDLFs and HDFs was examined by microarray, RT-PCR, qRT-PCR and ELISA. It was also immunohistochemically examined in the PDL in vivo. Chemotactic ability of CXCL12 was evaluated both in PDLFs and HDFs with migration assay of MSCs. The expression of CXCL12 in the HPDLFs was much higher than that in HDFs in vitro. CXCL12 was localized in fibroblasts and extracellular matrix in the PDL in rats. Migration assay demonstrated that the number of migrated MSCs by HPDLFs was significantly higher than that by HDFs. In addition, the migrated MSCs also expressed CXCL12 and several genes that are familiar to fibroblasts. The results suggested that PDLFs are able to synthesize and secrete CXCL12 protein, and that CXCL12 induces migration of MSCs in the PDL in order to maintain rapid turnover of the PDL. The objective of this study was to investigate the function of CXCL12 in the PDL with rapid turnover.Microarray analysis was performed using a Whole Human Genome 8x60K (Agilent Technologies, Tokyo, Japan) containing approximately 44,000 transcripts. According to the manufacturerM-bM-^@M-^Ys protocol, total RNAs from HPDLFs and HDFs were labeled with Cy3 and hybridized on the microarray. The hybridization data for HPDLFs were compared with data for HDFs.
ORGANISM(S): Homo sapiens
SUBMITTER: yuichi yashiro
PROVIDER: E-GEOD-52162 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA