Cross-species analysis of genome-wide regulatory networks identifies a synergistic dependency between FOXM1 and CENPF that drives prostate cancer malignancy
Ontology highlight
ABSTRACT: Analysis of the transcriptome of mouse models of prostate cancer to assemble a mouse prostate cancer interactome. To assemble the mouse prostate cancer interactome, we collected 13 distinct mice or genetically-engineered mouse models (GEMMs), which together represent the full spectrum of prostate cancer phenotypes including: normal epithelium (i.e., wild-type), low-grade PIN (i.e., Nkx3.1 and APT), high-grade PIN and adenocarcinoma (i.e., APT-P; APC; Myc; NP; Erg-P; and NP53), castration-resistant prostate cancer (i.e., NP-AI), and metastatic prostate cancer (i.e., NPB; NPK; and TRAMP). To further enhance the heterogeneity afforded by this diversity of mouse models, we pharmacologically perturbed each GEMM using 13 different drugs (or appropriate vehicle). The resulting mouse prostate tissue/tumor dataset encompassed 384 expression profiles Total RNA obtained from prostate tumors/tissues of 13 mouse models of prostate cancer treated with 13 different drugs for 5 consecutive days. Prostate tumors/tissues were harvested and processed for RNA isolation and transcriptome analysis.
ORGANISM(S): Mus musculus
SUBMITTER: Antonina Mitrofanova
PROVIDER: E-GEOD-53202 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA