ABSTRACT: We have generated human induced Pluripotent Stem cells (hiPSc) from Parkinson's Disease patients, using retrovirus-mediated delivery of reprogramming factors. hiPSc lines have been screened using SNP array to assess chromosomal stability (alongside the fibroblast lines from which they derived), and validation of the pluripotency of the hiPSc lines is provided by Pluritest assessment of transcriptome datasets, prior to differentiation to dopaminergic neuronal clutures and downstream functional assays. Fernandes H.J.R., Hartfield E.M., Badger J., Christian H. C., Emmanoulidou E., Vowles J., Evetts S., Vekrellis K., Talbot K., Hu M.T., James W., Cowley S.A., and Wade-Martins, R. Heterozygous glucocerebrosidase mutations in Parkinson's increase autophagic demand, but decrease capacity, in induced pluripotent stem cell-derived dopaminergic neuronal cultures. submitted for publication human iPSc lines were derived from human dermal fibroblasts from 2 Parkinson's Disease patients with heterozygous glucocerebrosidase mutations (GBA N370S) mutations, and 2 idiopathic Parkinson's Disease patients. SNP datasets from the 2 control individuals used in this study have been published previously [PMID 23951090; A mature physiological cellular model of human dopaminergic neurons Hartfield E.M., Yamasaki-Mann M., Fernandes H.J., Vowles., James W.S., Cowley S.A, and Wade-Martins R. In revision]