Project description:We profiled miRNA and mRNA expression of in vitro tumor-educated macrophages (TEM) by indirectly co-culturing with estrogen-receptor-positive (ER+) MCF-7 breast cancer cells. 2 biological replicates of untreated and co-cultured macrophages, parallel analysis of miRNA and mRNA expression
Project description:We profiled miRNA and mRNA expression of in vitro tumor-educated macrophages (TEM) by indirectly co-culturing with estrogen-receptor-positive (ER+) MCF-7 breast cancer cells. 3 biological replicates of untreated and co-cultured macrophages, parallel analysis of miRNA and mRNA expression
Project description:We profiled miRNA and mRNA expression of in vitro tumor-educated macrophages (TEM) by indirectly co-culturing with estrogen-receptor-positive (ER+) MCF-7 breast cancer cells. 3 biological replicates of untreated and co-cultured macrophages, parallel analysis of miRNA and mRNA expression
Project description:Background: The acquisition of drug resistance is one of the most malignant phenotypes of cancer. MicroRNAs (miRNAs) have been implicated in various types of cancers, but its role in taxane-resistance of prostate cancer remains poorly understood. Methods: In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC3 cells and paclitaxel-resistant PC3 cell lines established from PC3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC3 cell line. Results: The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC3 cells. Based on mRNA microarray analysis, we identified SLAIN1 and CAV2 as potential target genes for miR-130a. Transfection with a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Conclusion: These results suggested that miR-130a may be involved in the paclitaxel-resistance and could be a therapeutic target for taxane-resistant prostate cancer. Human hormone-refractory prostate cancer PC3 cells were cultured in RPMI1640 medium supplemented with 10 % of fetal bovine serum, 100 units/ml of penicillin and 100 ug/ml of streptomycin. Paclitaxel-resistant PC3PR20, PC3PR70 and PC3PR200 cells, which respectively could proliferate in the presence of 20, 70 and 200 nM of paclitaxel (Sigma-Aldrich, St. Louis, MO, USA), were previously established from PC3 cells by a stepwise increase of paclitaxel in the culture medium (Kojima et al, 2010, Prostate 70: 1501-12).
Project description:Gene expression profile of FABP4 treatment in RAW264.7 macrophages was examined to show a ligand (palmitic acid)-dependent and a ligand-independent effect of FABP4. RAW264.7 macrophages were treated with and without 200 nM recombinant FABP4 in the absence and presence of 0.2 mM palmitic acid.
Project description:Background: The acquisition of drug resistance is one of the most malignant phenotypes of cancer. MicroRNAs (miRNAs) have been implicated in various types of cancers, but its role in taxane-resistance of prostate cancer remains poorly understood. Methods: In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC3 cells and paclitaxel-resistant PC3 cell lines established from PC3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC3 cell line. Results: The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC3 cells. Based on mRNA microarray analysis, we identified SLAIN1 and CAV2 as potential target genes for miR-130a. Transfection with a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Conclusion: These results suggested that miR-130a may be involved in the paclitaxel-resistance and could be a therapeutic target for taxane-resistant prostate cancer. Human hormone-refractory prostate cancer PC3 cells were cultured in RPMI1640 medium supplemented with 10 % of fetal bovine serum, 100 units/ml of penicillin and 100 ug/ml of streptomycin. Paclitaxel-resistant PC3PR20, PC3PR70 and PC3PR200 cells, which respectively could proliferate in the presence of 20, 70 and 200 nM of paclitaxel (Sigma-Aldrich, St. Louis, MO, USA), were previously established from PC3 cells by a stepwise increase of paclitaxel in the culture medium (Kojima et al, 2010, Prostate 70: 1501-12).
Project description:Tumor-immune cell interactions shape the immune cell phenotype, with microRNAs (miRs) being crucial components of this crosstalk. How they are transferred, and how they affect their target landscape, especially in tumor-associated macrophages (TAMs), is largely unknown. Here we aimed to define miRome of TAMs and identify novel miRs those are deferentially expression in TAMs and decipher their functional relevance in disease settings.
Project description:Study question: Does storage time impact on transcriptome of slowly frozen cryopreserved human metaphase II (MII) oocytes? Summary answer: For the first time, we demonstrate that the length of cryostorage has no effect on the gene expression profile of human metaphase II oocytes. What is known already: Oocyte cryopreservation is a largely-used technique in IVF for storage of surplus oocytes, as well as for fertility preservation (i.e., women undergoing gonadotoxic therapies) and oocyte donation programs. Although it is known that cryopreservation negatively impacts on oocyte physiology and it is associated with decrease of transcripts, no experimental data about the effect of storage time on the oocyte molecular profile are available to date. Study design, size, duration: This study included 27 women undergoing IVF treatment, < 38 years aged, without any ovarian pathology. Surplus MII oocytes were donated after written informed consent. A total of 31 non-cryopreserved oocytes and 68 surviving slow-frozen/rapid-thawed oocytes (32 oocytes cryostored for 3 years and 36 cryostored for 6 years) were analyzed. Participants/materials, setting, methods: Pools of ?10 oocytes for each group were prepared. Total RNA was extracted from each pool, amplified, labeled and hybridized on 4x44K v2 microarrays (Agilent). Analyses were performed by R v3.1.3 software using the limma package v3.22.7. Main results and the role of chance: Comparison of gene expression profiles between surviving thawed oocytes after 3 and 6 years of storage in liquid nitrogen found no differently expressed genes. The expression profiles of cryopreserved MII oocytes significantly differed from those of non-cryopreserved oocytes in 107 probe sets corresponding to 73 down-regulated and 29 up-regulated unique transcripts. Gene Ontology analysis by DAVID bioinformatics resource disclosed that cryopreservation deregulates genes involved in oocyte function and early embryo development, such as chromosome organization, RNA splicing and processing, cell cycle process, response to DNA damage stimulus, cellular response to stress and DNA repair, calcium ion binding, malate dehydrogenase activity, mitochondrial membrane respiratory chain. Among the probes significantly up-regulated in cryopreserved oocytes, 2 corresponded to ovary-specific expressed large intergenic noncoding (linc)RNAs. This study included 27 women undergoing IVF treatment, < 38 years aged, without any ovarian pathology. Surplus MII oocytes were donated after written informed consent. A total of 31 non-cryopreserved oocytes and 68 surviving slow-frozen/rapid-thawed oocytes (32 oocytes cryostored for 3 years and 36 cryostored for 6 years) were analyzed.