Wnt5A Enhances Resistance of Melanoma Cells to Targeted BRAF Inhibitors
Ontology highlight
ABSTRACT: About half of all melanomas harbor a constitutively active mutant BRAFV600E/K kinase that can be selectively inhibited by targeted BRAF inhibitors (BRAFi). While patients treated with BRAFi initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. We observe significant elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein are also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction in levels of endogenous WNT5A in melanoma decreases cell growth, increases apoptosis in response to BRAFi challenge, and decreases the activity of pro-survival AKT signaling. Overexpression of WNT5A conversely promotes melanoma growth and tumorigenesis and activates AKT signaling. Similar to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibits growth, sensitizes melanoma cells to BRAFi, and reduces AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which then acts through FZD7 and RYK to promote AKT signaling, leading to increased growth and therapeutic resistance. Increased WNT5A expression in BRAFi-resistant melanomas also correlates with an associated transcriptional signature, which identifies potential therapeutic targets to reduce clinical resistance to BRAFi. Expression of WNT5A-correlated genes was compared in melanoma cell lines generated to be resistant to PLX4032 and the their associated naïve parental line Basal expression of the WNT5A-correlated genes was also measured in experiments comparing each naïve line to a mixed reference pool containing equal amounts of 47 melanoma cell lines.
ORGANISM(S): Homo sapiens
SUBMITTER: Jamie Anastas
PROVIDER: E-GEOD-55583 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA