Suppression of BRCA1 sensitizes to proteasome inhibitors in DNA repair-independent manner.
Ontology highlight
ABSTRACT: Germline and somatic mutations in BRCA1predispose to breast cancer. We found that proteasome inhibitors can selectively kill BRCA1-depleted cells. The toxic response involves a deregulation of the G1/S cell cycle checkpoint via hyperphosphorylation of RB1, 53BP1-mediated arrest at G2/M checkpoint, and ERN1-mediated unfolded protein response, culminating in a TNF receptor-mediated apoptosis. The study new unexpected molecular functions for BRCA1 protein and opens a novel possibility for the treatment of BRCA1-deficient cancers. We used microarrays to detail the global programme of gene expression underlying the response of BRCA1-deficient cells to proteasome inhibitor bortezomib. We aimed to identify genes that are strongly up- or down-regulated with a combination of BRCA1 knockdown and proteasome inhibition, but none of these treatments alone before the onset of apoptosis. HeLa and U2OS cells were transfected either with a non-targeting or anti-BRCA1 siRNAs (siControl or siBRCA1, respectively), treated with bortezomib for 8 hours, after which RNA was extracted for hybridization on Affymetrix microarray. The following treatments have been performed: (T1) siControl; (T2) siControl + 20 nM bortezomib for 8h; (T3) siBRCA1; (T4) siBRCA1 + 20 nM bortezomib for 8h. All samples were used without replicas. However, all genes showing inconsistent expression pattern between the two cell lines were excluded from further consideration. Selected candidate genes were subject to validation by qRT-PCR.
ORGANISM(S): Homo sapiens
SUBMITTER: Dario Greco
PROVIDER: E-GEOD-56280 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA