Project description:The Poplar transcriptome was analyzed in mycorrhizal root tips in contact with Laccaria bicolor for 2 weeks. During mycorrhization the roots were treated with either 250M-BM-5m ACC, 10nM JA or 500M-BM-5M SA and compared to untreated mycorrhiza or control roots without contact to L. bicolor. In addition the poplar mutants 35S::PttACO1 and 35S::Atetr1 were used We performed 27 hybridizations (NimbleGen) with samples derived from Populus tremula x Populus alba clone 717-1B4 control roots, untreated mycorrhiza, SA-treated mycorrhiza, ACC-treated mycorrhiza and JA-treated mycorrhiza (3 biological replicates each) as well as Populus tremula x Populus tremuloides T89 control roots, mycorrhiza, 35S::PttACO1 mycorrhiza and 35S::Atetr1-1 mycorrhiza (3 biological replicates). All samples were labeled with Cy3.
Project description:This study characterizes the transcriptomic alterations of P. tremula x P. alba at three weeks after inoculation with the ectomycorrhizal fungus Laccaria bicolor. We performed 6 hybridizations (NimbleGen) with samples derived from Populus tremula x P. alba control roots and mycorrhizal root tips. Samples were taken after 3 weeks of interaction (three biological replicates). All samples were labeled with Cy3.
Project description:Illumina HiSeq technology was used to generate mRNA profiles of bark from MIR15 compared to wildtype plants. Wild type (WT) and transgenic poplars (Populus tremula x P. alba, clone INRA 717-1B4) were grown aseptically on Woody Plant Medium. Total RNA was extracted using Tri-Reagent according to the manufacturer’s instructions. Reads of 2X100bp were generated and aligned to Populus trichocarpa v3.0 reference transcripts (http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ptrichocarpa; Ptrichocarpa_210_transcript_primaryTranscriptOnly) using CLC Genomics Workbench 7. mRNA profiles of bark from MIR15 compared to wildtype plants were generated by paired-end (2x100bp) Illumina HiSeq2000 sequencing. Two biological replicates were sequenced for MIR15 and WT samples.
Project description:Trichomes are specialised epidermal cells that generally play a role in reducing transpiration and act as a deterrent to herbivory. In a screen of activation tagged Populus tremula x P. alba 717-1B4 trees, we identified a mutant line, fuzzy, with increased foliar trichome density. This mutant also had a 35% increase in growth rate and a 200% increase in the rate of photosynthesis as compared to wild-type poplar. The fuzzy mutant had significant resistance to feeding by larvae of the white spotted tussock moth (Orgyia leucostigma), a generalist insect pest of poplar trees. The fuzzy phenotype is attributable to activation tagging and increased expression of the gene encoding PtaMYB186, which is related to Arabidopsis thaliana MYB106, a known regulator of trichome initiation. The fuzzy phenotype can be recapitulated by overexpressing PtaMYB186 in poplar. PtaMYB186 overexpression results in reconfiguration of the poplar transcriptome, with changes in the transcript abundance of suites of genes that are related to trichome differentiation. It is notable that this gene responsible for trichome development also altered traits related to growth rate and pest resistance, suggesting that non-intuitive facets of plant development might be useful targets for plant improvement. 6 arrays total. 2 genotypes – WT, FUZZY – PtaMYB186 OE
Project description:The Poplar transcriptome was analyzed in Populus tremulaxPopulus alba clone 717-1B4 control roots and in two poplar lines overexpressing MiSSP7. We performed 9 hybridizations (NimbleGen) with samples derived from Populus tremulaxPopulus alba clone 717-1B4 control roots, as well as from roots of LINE1 and LINE2 MiSSP7 overexpressor poplars (3 biological replicates each). All samples were labeled with Cy3.
Project description:This study characterizes the transcriptomic alterations of P. trichocarpa during interaction with the ectomycorrhizal fungus Laccaria bicolor S238N. Four time-points were analyzed, two weeks, four weeks , six weeks and twelve weeks after inoculation. We performed 32 hybridizations (NimbleGen) with samples derived from Populus trichocarpa control roots and P.trichocarpa mycorrhizal root tips. Samples were taken after 2,4,6 and 12 weeks of interaction (four biological replicates). All samples were labeled with Cy3.
Project description:Bud dormancy in perennials in boreal and temperate ecosystems is crucial for survival in harsh winter. Dormancy is released by prolonged exposure to low temperatures and is followed by reactive growth in the spring. Lysine acetylation (Kac) is one of the major post-translational modifications (PTMs) involved in plant response to environment signals. However, little information is available on the effects of Kac modification on bud dormancy release. Here, we report the dynamics of lysine acetylome in hybrid poplar (Populus tremula x alba) dormant buds. A total number of 7,594 acetyl sites from 3,281 acetyl proteins were identified, representing the largest to date dataset of lysine acetylome in plants. Of them, 229 proteins were differentially acetylated during bud dormancy release and were involved mainly in the primary metabolism. Site-directed mutagenesis enzymatic assays showed that acetylation strongly modified the activities of two key enzymes of primary metabolism, pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH). We thus propose that Kac of enzymes could be an important strategy for reconfiguration of metabolic processes during bud dormancy release. In all, our results reveal the importance of Kac in bud dormancy release and give a new perspective to understand the molecular mechanisms of tree’s seasonal growth.
Project description:Illumina GAIIx technology was used to generate mRNA profiles from the ectomycorrhizal fungi Laccaria bicolor colonizing roots of Populus trichocarpa. Samples were taken after two, four and 12 weeks of contact in order to identify mycorrhiza-regulated transcripts. 37bp reads were generated and aligned to the Populus trichocarpa (http://www.phytozome.net/poplar.php) and the Laccaria bicolor (http://genome.jgi-psf.org/Lacbi2/Lacbi2.home.html) reference genomes using CLC Genomics Workbench 6. mRNA profiles from Populus trichocarpa roots colonized by Laccaria bicolor for two, four and 12 weeks as well as from control roots and free-living mycelium were generated by using one lane of 37 bp Illumina GAIIx sequencing per sample.
Project description:This study characterizes the transcriptomic alterations of Laccaria bicolor S238N during interaction with P. trichocarpa. Four time-points were analyzed, two weeks, four weeks , six weeks and twelve weeks after inoculation and compared to the transcriptome of free-living mycelium from Laccaria bicolor S238N We performed 16 hybridizations (NimbleGen) with samples derived from P.trichocarpa/L.bicolor mycorrhizal root tips. Samples were taken after 2,4,6 and 12 weeks of interaction (four biological replicates). These samples were compared to free-living mycelium from Laccaria bicolor S238N (three biological replicates). All samples were labeled with Cy3.
Project description:This SuperSeries is composed of the following subset Series:; GSE16417: Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense: WRKY23-overexpressor; GSE16419: Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense: WRKY23-RNAi Experiment Overall Design: Refer to individual Series