Identification of MicroRNAs and Their Targets in Tomato Infected with Cucumber Mosaic Virus
Ontology highlight
ABSTRACT: We constructed two independent small RNA libraries from leaves of mock and Cucumber mosaic virus (CMV) infected tomatoes, respectively, and sequenced with a high-throughput Illumina Solexa system. Based on sequence analysis and hairpin structure prediction, a total of 50 known miRNAs (32 families) and 568 potentially candidate miRNAs (PC-miRNAs) were firstly identified in tomato, with 12 known miRNAs and 154 PC-miRNAs supported by both the 3p and 5p strands. Comparative analysis revealed 79 miRNAs (including 15 novel tomato miRNAs) and 40 PC-miRNAs were differentially expressed between the two libraries. Among these virus responsive miRNAs, expression patters of some novel tomato miRNAs and PC-miRNAs in mock and in CMV-Fny infected tomatoes were further validated by qRT-PCR. Moreover, we revealed 563 potential targets for 66 tomato miRNAs by the recently developed degradome sequencing approach, including 124 targets for 7 new tomato miRNAs and 97 targets for 24 PC-miRNAs. Target annotation for the newly identified miRNA and PC-miRNAs indicated that they were involved in multiple biological processes, including transcriptional regulation and virus resistance. Gene ontology analysis of these target transcripts demonstrated that stress response- and photosynthesis-related genes were most affected in CMV-Fny infected tomatoes. Examination of small RNAs and their targets in mock and CMV-Fny infected tomatoes.
ORGANISM(S): Solanum lycopersicum
SUBMITTER: Junli Feng
PROVIDER: E-GEOD-56974 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA