Project description:The Caulobacter cell cycle includes in an asymmetric cell division that is driven by a core regulatory circuit comprised of 4 transcription factors (DnaA, GcrA, CtrA, and SciP) and a DNA methyltransferase (CcrM). Using a modified global 5M-bM-^@M-^Y RACE protocol we mapped 2,726 transcriptional start sites (TSS) in the 4mb Caulobacter genome and identified 586 cell cycle-regulated TSS. The core cell cycle circuit directly controls about 55% of cell cycle-regulated TSS by integrating multiple regulatory inputs within at least 322 promoters, providing a large number of transcription profiles from a small number of regulatory factors. Here, we identified previously unknown features of the core cell cycle circuit, including antisense TSS within dnaA and ctrA, plus newly identified TSS for ctrA and ccrM. Altogether, we identified 615 antisense TSS plus 241 genes that are transcribed from multiple TSS. The multiple TSS in the same promoter region often exhibit different cell cycle activation timing, These novel features of the global transcript profile add significant insight to the system architecture of the Caulobacter cell cycle regulatory circuit. Global 5' RACE was performed to map Transcription Start Sites in the Caulobacter NA1000 genome
Project description:The Caulobacter cell cycle includes in an asymmetric cell division that is driven by a core regulatory circuit comprised of 4 transcription factors (DnaA, GcrA, CtrA, and SciP) and a DNA methyltransferase (CcrM). Using a modified global 5M-bM-^@M-^Y RACE protocol we mapped 2,726 transcriptional start sites (TSS) in the 4mb Caulobacter genome and identified 586 cell cycle-regulated TSS. The core cell cycle circuit directly controls about 55% of cell cycle-regulated TSS by integrating multiple regulatory inputs within at least 322 promoters, providing a large number of transcription profiles from a small number of regulatory factors. Here, we identified previously unknown features of the core cell cycle circuit, including antisense TSS within dnaA and ctrA, plus newly identified TSS for ctrA and ccrM. Altogether, we identified 615 antisense TSS plus 241 genes that are transcribed from multiple TSS. The multiple TSS in the same promoter region often exhibit different cell cycle activation timing, These novel features of the global transcript profile add significant insight to the system architecture of the Caulobacter cell cycle regulatory circuit. Global 5' RACE was performed to measure Transcription Start Site activity at time points of the Caulobacter NA1000 cell cycle
Project description:Antibiotic persistence is a transient phenotypic state during which a bacterium can withstand otherwise lethal antibiotic exposure or environmental stresses. In Escherichia coli, persistence is promoted by the HipBA toxin-antitoxin system. The HipA toxin functions as a serine/threonine kinase that inhibits cell growth, while the HipB antitoxin neutralizes the toxin. E. coli HipA inactivates the glutamyl-tRNA synthetase GltX, which inhibits translation and triggers the highly conserved stringent response. Although hipBA operons are widespread in bacterial genomes, it is unknown if this mechanism is conserved in other species. Here we describe the functions of three hipBA modules in the alpha-proteobacterium Caulobacter crescentus. The HipA toxins have different effects on growth and macromolecular syntheses, and they phosphorylate distinct substrates. HipA1 and HipA2 contribute to antibiotic persistence during stationary phase by phosphorylating the aminoacyl-tRNA synthetases GltX and TrpS. The stringent response regulator SpoT is required for HipA-mediated antibiotic persistence, but persister cells can form in the absence of all hipBA operons or spoT, indicating that multiple pathways lead to persister cell formation in C. crescentus.
Project description:We used deep RNA sequencing to obtain high coverage RNA-Seq data of five C. crescentus cell cycle stages, each with three biological replicates. We found that 1,586 genes (over a third of the genome) display significant differential expression between stages. This gene list, which contains many genes previously unknown for their cell cycle regulation, includes almost half of the genes involved in primary metabolism, suggesting that these "house-keeping" genes are not constitutively transcribed during the cell cycle, as often assumed. Gene and module co-expression clustering reveal co-regulated pathways and suggest functionally coupled genes. In addition, an evolutionary analysis of the cell cycle network shows a high correlation between co-expression and co-evolution. Most co-expression modules have strong phylogenetic signals, with broadly conserved genes and clade-specific genes predominating different substructures of the cell cycle co-expression network. We also found that conserved genes tend to determine the expression profile of their module. We describe the first phylogenetic and single-nucleotide-resolution transcriptomic analysis of a bacterial cell cycle network. In addition, the study suggests how evolution has shaped this network and provides direct biological network support that selective pressure is not on individual genes but rather on the relationship between genes, which highlights the importance of integrating phylogenetic analysis into biological network studies. Examination of 5 typical cell cycle types (5 samples), each with 3 biological replicates
Project description:Bacteria use a range of small signaling molecules to tune their physiology in response to changes in the environment. It has remained unclear if these regulatory networks operate independently or if they interact to optimize bacterial growth and survival. Here, we demonstrate that (p)ppGpp and c-di-GMP reciprocally regulate growth of Caulobacter crescentus by converging on a single small-molecule-binding protein, SmbA. Both second messengers bind to SmbA with high affinity and in a competitive manner, with the guanine moiety of (p)ppGpp and one of the guanyl bases of dimeric c-di-GMP forming identical interactions with SmbA. While c-di-GMP binding inhibits SmbA, (p)ppGpp interferes with this inhibition to sustain SmbA activity. We demonstrate that (p)ppGpp specifically promotes Caulobacter growth on glucose, while c-di-GMP inhibits glucose consumption. We find that SmbA contributes to this metabolic switch and promotes growth on glucose by quenching redox stress under these conditions. The identification of the first effector protein that acts as a central regulatory hub for two global second messengers opens up future studies on specific cross-talk between small-molecule-based regulatory networks.
Project description:Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5’-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5’ RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the ORF. These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division. Ribosome profiling and RNA-seq data were collected in Caulobacter crescentus NA1000 cells grown in M2G and PYE media to map transcript and ORF features in the genome.
Project description:The goal of this study was to measure the effects of nitric oxide exposure (using DETA NONOate as a nitric oxide donor) on transcription in Caulobacter. Untreated Caulobacter crescentus were grown to a density of 0.3 (at OD660) in PYE medium (pH 7) in rolled culture tubes. DETA-NONOate treated Caulobacter crescentus were grown to a density of 0.3 (at OD660), and then treated with 100 mM DETA NONOate for 30 minutes.
Project description:Cell cycle progression in most organisms requires tightly regulated programs of gene expression. The transcription factors involved typically stimulate gene expression by binding specific DNA sequences in promoters and recruiting RNA polymerase. Here, we find that the essential cell cycle regulator GcrA in Caulobacter crescentus activates the transcription of target genes in a fundamentally different manner. GcrA forms a stable complex with RNA polymerase and localizes to almost all active Ï70-dependent promoters in vivo, but activates transcription primarily at promoters harboring certain DNA methylation sites. Whereas most transcription factors that contact Ï70 interact with domain 4, GcrA interfaces with domain 2, the region that binds the -10 element during strand separation. Using kinetic analyses and a reconstituted in vitro transcription assay, we demonstrate that GcrA can stabilize RNA polymerase binding and directly stimulate open complex formation to activate transcription. Guided by these studies, we identify a regulon of ~200 genes, providing new insight into the essential functions of GcrA. Collectively, our work reveals a new mechanism for transcriptional regulation, and we discuss the potential benefits of activating transcription by promoting RNA polymerase isomerization rather than exclusively recruitment. Examination of GcrA, RNAP, Sigma70 ChIP in PYE and in PYE + rifampicin-treated for 30 min; sigma32 and sigma54 in PYE + rifampicin-treated for 30 min
Project description:Many bacteria decorate flagellin with sialic acid-like sugars such as pseudaminic acid (Pse) by O-glycosylation on serine or threonine residues. Evidence for sufficiency of sialylation by a conserved flagellin glycosyltransferase (fGT) system is lacking, presumably because of (a) missing component(s). Here, we reconstituted two Maf-type fGTs from the Gram-negative bacterium Shewanella oneidensis MR-1 in a heterologous host producing a Pse donor sugar. While Maf-1 is sufficient for flagellin glycosylation, Maf-2 reconstitution requires a newly identified, cis-encoded and conserved specificity factor GlfM, predicted to form a four-helix bundle. While GlfM binds Maf-2 to form a ternary complex with flagellin, the C-terminal tetratricopeptide repeat (TPR) domain of Maf-1 confers flagellin acceptor and O-glycosylation specificity at preferred serine residues. GlfM from Gram-negative and Gram-positive bacteria are functional, providing evidence for convergent evolution of specialized flagellin modification systems with acceptor serine selectivity, while also shaping the evolution of bacterial tripartite and bipartite O-glycosylation systems.
Project description:Double-strand breaks (DSBs) can lead to the loss of genetic information and cell death. Consequently, cells in all domains of life have evolved mechanisms to repair DSBs, including through homologous recombination. Although recombination has been well characterized, the spatial organization of this process in living cells remains poorly understood. Here, we introduced site-specific DSBs in Caulobacter crescentus, and then used time-lapse microscopy to visualize the homology search, DSB repair, and the resegregation of chromosomal DNA. Even loci tethered to opposite cell poles can efficiently release, pair to enable recombination-based repair, and then resegregate to their original locations. Resegregation occurs independent of DNA replication and without disrupting global chromosome organization. Origin-proximal regions are resegregated by the same machinery, ParABS, used to segregate undamaged chromosomes following DNA replication. In contrast, origin-distal regions efficiently resegregate after a DSB independent of ParABS, and likely without dedicated segregation proteins. Instead, we propose that a physical, spring-like force drives the resegregation of origin-distal loci after DSB repair. Caulobacter cells were depleted of DnaA for 1.5 h before synchronization. Swarmer cells were then released into DnaA depleting conditions (without IPTG) and double-strand breaks were induced for 1 h by the addition of 500 ?M vanillate. For control sample, no vanillate was added. Formadehyde (Sigma) was then added to the final concentration of 1%. Formadehyde crosslinks protein-DNA and DNA-DNA together, thereby capturing the structure of the chromosome at the time of fixation. Fixation was performed at the cell density of OD600 = 0.2. The crosslinking reactions were allowed to proceed for 30 minutes at 25 °C before quenching with 2.5 M glycine at a final concentration of 0.125 M. Fixed cells were then pelleted by centrifugation and subsequently washed twice with 1x M2 buffer (6.1 mM Na2HPO4, 3.9 mM KH2PO4, 9.3 mM NH4Cl, 0.5 mM MgSO4, 10 ?M FeSO4, 0.5 mM CaCl2) before resuspending in 1x TE buffer (10 mM Tris-HCl pH 8.0 and 1 mM EDTA) to a final concentration of 107 cells per µl. Resuspended cells were then divided into 25 µl aliquots and stored at -80 °C for no more than 2 weeks. Each Hi-C experiment was performed using two of the 25 µL aliquots. Chromosome conformation capture with next-generation seqeuncing (Hi-C) was carried out exactly as described previously (Le et al., 2013 PMID: 24158908)